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FOREWO:RD

These notes have been prepared for a course entitled, "The

Technology of Underwater Sound, " given at the U. S. Naval Air

Development Center by Mr. Charles L. Bartberger. As originally!

written they were intended as a simplified presentation of some of

the material contained in J. W. Horton's book, "Fundamentals of

Sonar, " published by the U. S. Naval Institute. They have since been

revised and a considerable amount of new material hai been added.

It will be evident, upon examining the contents of these notes,

that the approach is largely theoretical. The intent has been

primarily to present basic principles and for this reason the portions

dealing with hardware and practical applications are rather siretchy.

A number of topics, such as explosive echo-ranging and paiisive

listening, have been omitted. It is hoped to include these topics and to

improve the organization and the consistency of notation in a later

revision.
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TECHNOLOGY OF UNDERWATER SOUND

INTRODUCTION

I. Uses of Underwater Sound

a. To detect, track, and localize submerged objects (chiefly submarines

and mines).

b. Communication. Sound propagation through the water may be use, for

voice and other communication between submarines, ships, and (with the aid

of sonobuoyE) aircraft.

c. Navigation. Navigation by underwater sound is becoming increasingly

important as submergence time increases.

d. Surveying. In the field of oceanography, sound is being used to sur-

vey the oceans to permit' underwater navigation.

In this course we shall be concerned chiefly with the detection of

submarines.

2. Methods of Detecting Submarines

a. Electromagnetic

(1) Visual. Up to the present time the eye has been the best detector

of submarines. Limited to surfaced or snorkeling submarines or to wakes

behind recently submerged submarines. Optical path in water is very short.

Limited to conditions of good visibility.

(2) Radar. Subject to same limitations as visual detection, except

*0that radar is applicable under conditions of poor visibility (at night, etc.) and

Provides gre.ater detection ranges under favorable conditions. Back scattering

from sea surface is a serious limitation on snorkel detection in high sea states.

Radiation emitted by radar gives warning to submarines at distances beyond

radar detection range.



d. Active Sonar (Echo Ranging). Acoustic energy supplied by the sonar in

the form of a pulse? such as a ping or an exploaion, Pulse is transmitted to

target and is returned in the form of an echo. Two-way transmission. Signal

depend' upon the.strength of the pulse, the back-scattering properties of the

target, and the two-way propagaltion loss. Interference consists not only of

sea noise and self-noise of listening platform, but also on amount of radiated

energy which is scattered back by the ocean environment - reverberation.

(L) A Mionostatic echo ranging system is one in which both the trans-

mitting anid receiving elements are located at approximately the same place,

(2) A Bistatic.echo ranging system is one in which the transmitting

and receiving elements are separated from one another,

e, Principal Advantages and Disadvantages

Passive SQnar

Advantajes Disadvantages

Does not alert target Depends upon coopetation of
One-way propagation loss target
No reverberation Poor range information
Ability to classify target

Active Sonar

AgIvantage s Disadvantag. s_

Good vs. a quiet target Alerts target
Gives accurate range information Range limited by two-way
Speed information from doppler shift propagation loss

Signal strength depends on target
aspect

Reverberation

J, f. Factors Affecting Sonar Performance

(1) Frequency of Acoustic Waves, Frequency ffects attenuation of

waves in the ocean rnedium, High-frecplency waves are heavily absorbed--high

attenuation- -short ranges. Frequency also affects size of equipment. Low

frequency (requirea for long ranges) has long wave length; necessitates large

equipment r -bulky, heavy4 expensive. Frequency also affects resolving power

(ability to distinguish two objects located close together).

3
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(2) Velocity of Soundi Velocity of sound is abqut 000 it/sec. 'A

Very slow compared with electromagnetic waves. .Imposes limitation on

information rate. {
(3) Refraction of Sound Waves. Variation of velocity of sound with

depth causes sound rays to travel in curved paths, Creates "shadow zones."

Severely limits detection ranges under unfavorable conditions.

(4) Location of Sonar Elements. Limitations imposed by refraction

can be alleviated to some extent by locating the transmitting and receiving

elements at the optimum depth. The problem is complicated, however, by he-

fact that the target, unless committed by tactical considerations, is free to

choose his best depth to uvoid detection.

(5) The Sonar Platform. In some cases the self-noise generated by

the sonar platform itself is a critical item limiting sonar performance. An

example is the noise generated by a destroyer or by a helicopter with dipping

sonar.

4



TECHNOLOGY OF UNDERWATER SOUND
(REVISED NOTES)

Physical Properties of Acoustic Waves in Water
A. One-Dimensional Plane Waves

1. Introduction.

We shall begin our discussion o( acoustic waves in water by

considering the simple case of one-dimensional plane waves in an ideal

infinite, homogeneous ocean. 'magine a hypothetical infinite rigid plane

which by some means is made to oscillate back and forth in this medium

with sinusoidal motion, the direction of motion being at right angles to the

plane. If the water were totally incompressible, the whole ocean would

move simultaneously with the driving plane. This would correspond to

an infinite speed of propagation.

Actually, however, water is slightly compressible. The

inertia of the water tends to resist the motion of the plane. When, for

example, the plane moves to the right, it compresses the immediately

adjacent water particles on the right. This increased pressure then acts

on the particlesof -rater farther to the right, causing them to move and

exert pressure on the particles beyond them. The increase in pressure is

thus propagated as a wave through the water. The speed of propagation is

determined by the density and elasticity of the medium.

When the plane moves toward the left, it causes a reduced

pressure tending to drag the water particles back again. The motion of

these particles in turn reduces the pres:sure on the particles to their right,

and so on. The wave of increased pressure is thus followed by a wave of

reduced pressure.

By this action the driving plane transmits its sinusoidal motion

to all the particles of the medium. Because of the finite speed of propaga-

tion the phase of the oscillations is delayed by an amount proportional to

the distance the wave has traveled f-rom the source.

5



The motion of the particles in an acoustic wave in water is

parallel to the direction of propagation. Such waves are called

lonitudinal waves, as contrasted with the transverse waves of a

vibrating string where the motion of the particles is at right angles to

the direction of propagation.

2. Differential Equation of Motion

Before discussing quantitatively the characteristics plane

acoustic waves, we shall first derive the basic differential equation and

shall then show that its solution leads to a mathematical description of

the observed phenomena.

For this purpose let us consider a very thin slab of water

bounded by two planes pa-tailel to the hypothetical driving plane. Let the

area of the faces of tho slab be A. (The value selected for A is immaterial,

since by our hypotbsis the motion of the Water is the same at all points

over the entire plane , ) In the absence of sound waves the thickness of the

0+

y IJ

. slab is dx, the left face being at a distance x from the driving plane. The

mass of the slab is pAdx, where p is the density of the water. The

606
absolte prssureon th slabis Po

?f5tAYP



In the presence of acoustic waves the slab will move back

and forth about the position x, and in addition the water will be compressed

and expanded, so that the right-hand face will experience a slightly different

motion than the left-hand face. Let § denote the displacement of the left-

hand face from its equilibrium position at x. If we were to photograph the

slab at a particular instant of time, we should find that the left-hand face

has moved from x to x + and the right-hand face has moved from x + dx

tox+dx+ +d . The pressure on the left is now Po + p, where pis

the fluctuating component of the pressure due to the presence of the waves,

called the acoustic pressure. The pressure on the right face is Po + p + dp.

In ordinary sound waves encountered in the sea, as distinguished

from the shock waves resulting from explosions, the displacement is

exceedingly small. It is therefore to be understood that

<< x

d§ <<dx

p <<Po

We are now in a positi,,n to calculate the acceleration of the

slab by Newton's second law,

F = ma

The net force acting toward the right is the difference between the forces

on the two faces,

F=(P+p) A - P+p+d p) A -Adp

The mass is

m pAdx

The acceleration is

a

(It will be noted that since the displacement is a function of both x and t,

we must use partial derivatives to indicate rates of change with time at a

fixed value of x.) Therefore

-Adp = pAdx -

ap _ 2

or

b7



Note that the ratio of dp to dx is also a partial derivative, since the pressure

incremnent corresponds to a change in x at a fi-Ied instant of time. This

equation says that the force exerted on a unit volume of the liquid is equal

to the (negative of the) pressure g.radient.

We must nbw evaluate the pressure gradient in terms of the

elasticity of the medium. This is done by application of Hooke's law:

Stress Constant x Strain

In the present situation the stress is the difference between the pressure on

the slab when the waves are present and the equilibrium pressure in the

absence of waves

Stress = (Po + p) - Po = p

The strain is the corresponding fractional change in volume. The equilibrium

(unstressed)volume is

V o = Adx

The volume when the waves are present is

V = A (dx+d )

Since an increase in pressure causes the volume to decrease, the strain is

t V - V _ Adx - A(dx+d ) 
Strain- ,Ad-

Vo Adx a
In the case of volume compression of a liquid, the constant of proportionality

is the bulk modulus of elasticity, denoted by E.

Hooke's law therefore takes the form

p E Vo

or

p= -E-- (2)
If we take the partial derivative of (2) with respect to x, we obtain

x NX-2(3)

Substitution of (3) into (I) yields

a? P 62(4)

which is the basic differential equation for the particle displacement.

A8



It will be seen from equatioii (2) that the bulk modulus E has the dimefisions

of pressure, which is forc'e/aiea, or mass acceleration/area. Density

is mass/volume. -,.Using the osymbols M, L, and T for mass, length, and

time we see that
ML ME TLZ LT

I/
M

p-i

and E M L3  L,

- LT-- X

The ratio FE thus has the dimensions of velocity. It iri, in fact, the spqed

of propagation of the waves, which will be denoted by the symbol c.

C(5)

This relation was derived by Sir Isaac Newton several centuries ago and

within the past 50 years has been repeatedly checked by measurement of

all three physical quantities.

The speed of sound in sea water is of the order of 5000 feet/

second. Its value is not constant everywhere, but depends somewhat upon
the temperature, the pressure (which of course is a function of the depth),

arid, to a somewhat lesser extent, upon the salinity, or salt content. The

maximum variation is from about 4700 to about 5100 ft/sec. Although the

variations are only a few percent, small changes -In the speed of propagation

are capable of exerting a profound influence on the performance of under-

water acoustic systems, as we shall see later.

Equation (4), which we may now write in the form

(4a)

is valid for a one dimensional wave such as we are now considering, but

it does not hold in general for more complicated waves. The corresponding

equation involving pressure instead of displacement is generally valid,

however, and can be obtained by taking the first partial derivative of (1)

with respect to n, and the second partial derivative of (2) with respect to t.

Thus



52p ____
=P 5 xt?

and E
itz xaatz

so that p I p (6)

3. Solution of the Differential Equation.

Since both (4a) and (6) have the same form, the solutions will

be similar. There are two types of solutions, one of the form

* (t - x/c)

and the other of the form

* (t +Xc)

where can be any suitable function having continuous derivatives. To

verify that these are solutions of the differential equation, all that is

necessary is to take the derivatives and substitute them into the differential

equation. For example, in the case of the first function (t - X/c), let

xv w t-
c

and *,=t. , =t --d' d/
dw dw dwz

_ IIwThen xdw - c

ax dw "x-

and = d± 5w
dw t

dw it =*t

so that =c" -r

The functiou * (t - ) represents a wave traveling in the positive

x direction. To see this we note that the function has a constant value for

all values of x -nd t which satisfy the relation

10



t constant
C

or x = ct + cdn~tant

The behavior is illustrated in the following sketch which shows a wave

"photographed" at three successive instants of time t l , tZ, t 3 . The location

of any given point on the wave, such as the peak at A, progresses Lom x, at

t1 to x2 at t2 , to x 3 at t3 , etc., where

x1 - ct1 =x? - ct Z = x 3 - ct 3  constant

Hence the shape of the wave remains fixed as the wave progresses uniformly

along the x axis with speed c.

'A

A j

The function (t + x/c), on the other hand, represents a wave

traveling with speed c in the negative x direction, as may be seen from the

fact that the function has a constant value for all values of x and t which

satisfy the relation

x = - ct + constant

Since the two waves differ only in the direction of propagation,

but otherwise have the same physical properties, we shall for the present

restrict our attention to the firct type.

1-1



4. Sinusoidal Waves; Acoustic Pressure

In this survey of underwater acoustics we shall be concerned

chiefly with sinusoidal waves or with more complicated waves which,

by Fourier analysis, can be synthesized from sinusoidal waves. The

pressure, displacement, and other related characteristics of sinusoidal

waves are expressed in terms of sines and cosines of the angle

rZrf(t - X/c) or w(t - X/c), where f is the frequency in cycles per second

and WO = Zirf is the "angular frequency" in radians per second.

Following the conventional practice in a. c. circuit theory, we

shall use the complex exponential notation

e2 7riJf(t - x/c) or ejw(t-x/c)

which is useful because it tends to simplify the mathematical operations.

The relationship between the exponential and the sine and cosine is given

by the basic mathematical theorcms

eje = cos 0 + j sin $ (7)

cos 0= (ei + e - j ) (8)

sin 1 (ej Pae-j0

where j =

The complex exponential ej 8 is thus a complex number whose real part

is cos 0 and whose imaginary part is sin 8. When plotted in the complex

I2

C4I a_-
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plane, eJ 0 is seen to be a vector of unit length, making an angle e with

the positive real axis. As 0 is varied from 0 to 2n radians, the tip of

the vector -traces out a circle of -unit radius. Of particular interest are

the following four values-of 0:

0 0 ej

degrees radians

-90 - Ir/2 _

0 0 +I

90 r/2 j

S180 ITr -

When a characteristic of a wave, such as the pressure, is

expressed as a complex exponential, it is to be understood that the actual

physical quantity is represented by the real part of the complex number.

For example, if the pressure is given as

p = A e iJ(t - X/c) (complex)

where A is a real number, then the actual physical pressure is

p=Acosa)(t -X/c) kreal)

The solution of a second order differential equation involves two

constants of integration. In a continuous wave these constants can be

interpreted as the amplitude and phase. The general expression for the

pressure is thus

P Pm eJ e2Tjf(t - x)j Pm ey f (t- 2E) +

where pm is the amplitude and is the phase. The real pressure is

P = Pm co1 2irf(t - 1-) +4j

Note: From a strict mathematical standpoint, different 3ymbols should be

used for the complex and real quantities. However, it is thought that the

additional complexity is not warranted in these notes.

From a practical standpoint, when we are considering a particular

physical quantity by itself, the phafe angle is of no significance, since

without loss of generality it can be eliminated by a slight shift in the origin

13



of t (or of x). However, when we are investigating the relationship

between one physical quantity and another, such as pressure and displace-

ment, the relative phase between the two quantities is of great importance.

For our present discussion we shall treat the pressure as having zero ph-a

Aphases of all other quantities to that of the pressure.A
The complex instantaneous pressure is expressed by the

formula
aZrjf(t -p ejIO(t - (10)P=Pmie p

the real part being
Xx

p= cos Zf(t - c) = pm cos cO(t - c ) (l0a)
c C

If we were to sit at a fixed location in space and were to measure the

instantaneous pressure as a function of time, ",e should see that it oscil-

lates sinusoidally between - Pm and + Pm. Converse.>, if w ewere to

"freeze" the wave at any instant of time, we should observe that it varies

sinusoidally with x, as indicated in the following sketch, which is drawn at

time t = 0. The distance corresponding to one cycle is called the

wavelength, \. To determine the relation between the wavelength and

other parameters, we note that when x changes by an amount X, the

phase angle in (10) and (10a) changes by 27r radians. Thus,

2rf (t ) .2rf (t - x ) 21r
c c

or ? =fc (,l)

14
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Equation (11) is an extremely important fundamental relationship. By

use of this formula, the phase angle is frequently expressed in a variety

of equivalent forms, such"as

z~rf(t--) = w(t-x)
CC

= Z (ft' )

= lt- (12)

- wt - kx

= k(ct -x)

2ir
where k = = the wave number (13)

All of the above forms are used interchangeably.

5. Particle Displacement and Particle Velocity.

The particle displacement has already been defined as the

displacement of the particles of water from their static equilibrium

position due to the passage of a wave. Its direction is parallel to the

direction of propagation, which, in our one-dimensional plane wave, is

along the x axis. The particle velocity, which will be denoted by the

symbol u, is the rate of change of with respect to time,

u =(14)

The relationship between the displacement and the acoustic

pressure is expressed by equation (2). In applying this equation, it will

be desirabie to express the bulk modulus E in terms of the density and the

speed of sound by subet.tution of (5). Thus,

p = -_pc
2  (15)

We know that since is a solution of the differential equation (4a), it will

have the form

=B e( -

The unknown constant B can be evaluated by differentiating with respect

to x and substituting into (15)

F ,15



__ jwB jiiX~t__
e Pczx c PC

Pm j rt "

- - "- e
PC-

The value of B is

B =---- = -j -

The factor - j indicates that the displacement is 90 degrees out of phase

with the pressure. If we let m denote the amplitude of the displacement,

~we have
j (t10 (t

--Jm e (16)

from which it is seen that

_ Pm
m pc '(17)

To observe the phase re.,%tions.ip we note that

.j =,j

Hence j - -Sjlwgt -e I

The term - - signifies that the displacement lags behind the pressure in

phase by 900. The real displacement is

msin 4A (t - 16a)M C

Taking the derative of (16) we obtain for the particle velocity
'; ~jW)(t - )

U em

If um denotes the amplitude of the particle velocity, so that

jgt -E)
u = um e (18)

4we see that

and hence, from (17)

Pm PC um  (20)
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It is further observed from (10) and (18) that the pressure and particle
~velocity are in phase, so that the preceding relationship holds not only

for amplitudes but for the instantaneous values as well. Thus,

p = pcu (21)

I We shall learn later that although equation (21) holds for plane

waves, it does not hold in general for other types of waves.

6. Pressure Gradient

The pressure gradient is the rate of change of the pressure with

respect to space coordinates. In the special case of our one-dimensional

plane wave, the pressure gradient is simply the rate of change of p with

respect to x. From equation (10) we have

-_ jWp n  jaj(t -
- eax

The pressure gradient lags the pressure 90 degrees in phase. In terms of

its amplitude the pressure gradient may oe written

ap ap jio(t _X)c

the real part being

(x=  s ~m in (J. t ' c  (22a)

ap
The relation between (P- ) and Pm is

m ) =W kpm (23)

7. Intensity

The utility of acoustic waves to man depends fundamentally upon

their property of propagating energy from one location to another. In order

to convey information, for example, one must transmit a certain amount of

energy. The propagation of acoustic energy through a medium is expressed

in terms of acoustic intensity, which is defined as the rate of flow of energy

17



across a unit area normal to the direction of propagation. To be more

precise, let A represent the area of a small portion of such a normal

surface surrounding the point at which the intensity is defined, and let

dE/dt represent the rate of flow of energy across A. Then the intensity

is

Intensity = lim dE/dt

A-* 0 A

This definition is required in the general case where the energy flow

varies from point to point over the normal surfaces. In the special case

of plane waves, of course, the surface normal to the direction of propaga-

tion is a plane, and the intensity is uniform over the plane.

The relationship between the intensity and other properties of

the wave which have already been discussed may be derived irom two

different points of view. Since each provides a different insight into the

situation, we shall consider them both. I

First, the propagation of energy along the wave may be thought

of in terms of the work done on a sheet of water particles (in a plane

normal to the direction of propagation) by the pressure exerted on them

t by their neighbors "upstream, " The work dW by a force F acting through

a distance dx is Fdx, and the power expended by the force is the work per it

unit time,
dWl dt = F Lea t dt

If now we focus our attention on a unit area of the sheet, the force exerted

on unit area is simply the pressure p, and the work per unit area per

unit time is the intensity, while the velocity dxdt is the particle velocity u.

Hence the intensity is

I = pu (24)

It will be recalled that in a plane wave the acoustic pressure

and the particle velocity are in phase, so that a positive acoustic pressure

occurs when the water particles are moving in the positive x direction,

whereas a negative acoustic pressure occurs when they are moving in the

negative x direction. In other wo-ds, the particles move to the right under

18



higher-than-normal absolute pressure and to the left under lower-than-

normal absolute pressure. Both of these conditions are accompanied

by a transfer of energy to the right. At the instant when both p and u are

zero there is no transfer. The propagation of energy thus occurs in

pulses at the rate of two pulses per cycle.

It is interesting to note that if we were to consider a wave

traveling in the opposite direction, the prebsure and particle velocity

would be functions of t + x/c instead of t - x/c, and we should find that

p is positive when u is negative, and vice versa (180 degrees out of phase),

confirming the physical concept that energy is flowing in the negative x

direction.

In the second approach we consider the energy density (i. e.,

energy per unit volume) associated with the wave and note that the

intensity is equal to the product of the energy density and the velocity

of propagation. Energy is present in two forms - kinetic and potential.

Kinetic energy. The familiar formula for kinetic energy is

j(mass) x (velocity)'. The kinetic energy density is therefore

'(mass per unit volume) x (velocity)? = * pu3

This result can be written in terms of pressure instead of density

by application of (21).
K. E. density =pu (2)

Potential energy. It will be recalled that the passage of a wave

is accompanied by a periodic compression and expansion of the water. It

takes work to compress or expand the water from its original volume at
the equilibrium static pressure to the new volume associated with the

transient pressure due to the wave. The incremental work required to

change the volume from any value V to V-dV is -pdV, where p is the

acoustic pressure (differential pressure) corresponding to the volume V.

The total work required is computed by integrating -pdV over the range

from the initial to the final volume. The computation can be simplified

by noting that according to Hooke's law the pressure is proportional to
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the change between the original and final vol.,me, and hence the average

pressure is one-half the final pressure. The total work done on an

original volume Vo is therefore

-p (vo - V)

Applying Hooke 's Law

pEVo - V
Vo

and noting that the potential energy density is the work done on unit

volume, i.e., Vo = I unit, we obtain

P.E. density= pZ = - = pu (26)
2E 2pc z  2c

(equations (5) and (21)).

Comparison of (25) and (26) shows that the kinetic energy

density and potential. energy density are equal, and the total energy density

is pu/c. The intensity is obtained by multiplying the energy density by the

velocity of propagation c, leading to the same result as we had before.

With the aid of equation (21), p = pcu, the intensity may be

expressed in two alternate forms

I = pu (24)

- p- (24a)
~pc

= pcu2  (24b)

In acoustic measurements it is not the usual practice to measure

inten3ity directly. Most hydrophones in common use are of one of three

types - sensitive to pressure, particle velocity, or pressure gradient.

The intensity must be computed from the appropriate formulas. Actually,
a however, intensity, as expresoed explicitly in units of rate of energy flow

per unit area, is seldom used in underwater acoustics. The baqic neasure-

ment is one of pressure, and the concept of intensity is involved only

implicitly as 'that intensity which is equivalent to such and such number of

microbars. " This practice appears to be quite satisfactory for those already

working in the field, but it is a little awkward from the standpoint of

indoctrinati-,g new people.
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8. Note on Units of Measurement

The unit in which underwater acoustic pressure is measured is

the dyne/cM Z or microbar (the two units are equivalent). Since the

dyne/cm Z is the unit of pressure in the cgs (centimeter-gram-second)

system of units, it is desirable in working with the theoretical formulas

of the preceding paragraphs to express all the physical quantities in the

same system of units. The various quantities and their respective units

are as follows:

tine, t - sec

frequency, f - cycles/sec

angular frequency, a) - radians/sec

linear dimensions, x, t, X - cm

velocity, u, c - cm/sec

acceleration - cm/sec z

mass - gm

density, p - gm/cm

force (masai x accel.) - gm cm/sec2 dyne

pressure, p - dyne/cm? = microbar

modulus of elasticity, E - dyne/cm

pressure gradient, dyne/cm3

energy (work) - dyne cm = erg

also, 1 joule = 107 erg

energy density - erg/cm 3 or joule/cm3

power - erg/sec or watt

1 watt = 1 joule/sec = 10 7 erg/sec

intensity, I - erg/cm z sec or watc/cm Z

1 watt/cm z = 107 erg/cm2 sec

It should be pointed out that although the above set of units is

useful in providing a consistent basis for theoretical computations, most

practical measurements of distances, wavelengths, sound speed, etc.

are made in more familiar units, as will be discussed later.
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9. Average Values

In making acoustic measurements we are in general interested
in average values rather than instantaneous values. Hydrophones which
are sensitive to pressure or particle velocity measure the root mean
squa.e value of these quantities. The root mean square is the square root

of theaverage of the squares. In computing the square of a quantity we
Smust work with real values rather than complex values, since the .square
of the imaginary part leads to a real number. The mean square pressure

is theaverage of
2 x

PM ccsz t,4 (t -c

The average of cos z W2 (t - over a cycle is , so that

Prms .7 - Pm (27)

Similarly,

Urms - um  (27a)

rms m (27b)

and

72 Tax (Z7c)rms ax)

The instantaneous value of the intensity, according to (24), is
zI= Pm un cosZ 1(t -c

Since the average of cos? W. (t - is , the average intensity is

Iav: =P m (2-7d)

a y Combining these results, we find th" thp following formulasapply to the average values
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Urms =6'-9rms

Prms = PC Urms

( )rms Prms = kPrms (30)
P~rms

2

Iav Prms Urms pc Pcm (31)

In the later portions of this course we shall be dealing

exclusively with rms values and shall then drop the subscripts to simplify

the notation. For the time being, however, we shall retain the current

notation. It should be stressed that all formulas expressed in the forn

j1W t - c)

Instantaneous value = (Amplitude) e

can also be written in the equivalent form

Instantaneous value =/Z (RMS value) e

10. Acoustic Impedance

It is instructive to note the analogy between the formulas for

acoustic waves electrical a. c. circuits

p = pcu e = Ri

I = pu P = ei

= pcu2  = Riz

= ez/ = ez/R

The acoustic formulas apply to plane waves and the electrical foimulas

apply to a purely resistive a. c. circuit. Note the correspondence:

Acoustic Electrical

pressure, p voltage, e

velocity, u current, i

intensity, I power, P

pc resistance, R

It is seen that the product pc, which is a property of the acoustic

medium, is the analog of electrical resistance. On the basis of this
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fr analogy, the quantity pc is called the specific acoustic impedance of the

medium. It is measured in units of specific acoustic ohms. In the I
fundamental cgs system oi units the density p is expressed in gm/cm

and the speed of sound c in cm/sec, so that

I specific acoustic ohm = I (gm/cm3)(cm/sec)

Typical values in sea water at 60*F and in air at 20"C and one atmosphere

pressure are given in the following table:

Water Air

p tgm/cm3 ) 1.026 0.00121

c (cm/sec) 150,000 34,400

pc (sp. ac. ohms) 154,000 42

The specific acoustic impedance is a very important factcr in the design of

sonar equipment.

Since the above analogy involves only resistive (non-reactive)
iMr d ce_" is t Y~ti%- -4

circuits, it nray be wondered why the termfiresistance. " The answer is

that thus far we have been considering only plane waves. When we come

to other types of waves, such as spherical waves, we shall find that the

pressure and the particle velocity are no longer in phase, and hence the

wave is analogous to an electric circuit containing both resistance and

reactance. The ratio of pressure to particle velocity is then analogous

to an impedance.

11. Standing Waves

It frequently happens, both in the ocean and in transducer
calibration tanks, that reflecti:ns from the boundaries of the medium

give risc to additional waves, so that waves traveling in more than one

directio -  nay be present in the water at the same time. This phenomenon

produces marked changes in the acoustical pattern and unless suitable

precautions are taken can introduce significant errors into acoustic

measurements.

To illustrate the effect we shall consider the ideal case of

perfect reflection from a boundary at right angles to the direction of
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propagation, producing two wave trains of equal intensity, traveling in

opposite directions. (It will be noted that to achieve such a condition in I
practice it would be necessary to have two such reflectors separated by

the proper distance, like the case of a violin string, but we shall not be

concerned with these details in the present discussion.)

To distinguish the two waves let us employ the subscript I to
identify the wave traveling in the positive x direction and the subscript 2

for the wave traveling in the negative x direction. For the fir!t wave the 

pressure, particle velocity, and pressure gradient are

j x j (t
u I = Ume c ) ,

, w~ X

(p - * j(t--)
(x " -J (x m

where
Pm= Pc um

Um = W Sm

(ap)m=Wpm-= kpm

For the second wave the pressure is

j o(t + -)
p = m e

In deriving expressions for the other quantities we follow the same

procedure as before. The only difference between the two results is that
derivatives with respect to x will have the opposite sign. Since one such
derivative is involved in each case, the results are

j (t +X)

u z = -ume

bp = ap j4) (t+ )
( )2 +j ( ) e
6x ax m j 4.

The sign reversal is quite logical, since both the particle velocity and

pressure gradient are vectors whose direction is the direction of propagation.
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Pressure, ,on the,,othe-r hand, is4.a- scalar qa1 antity, -independnt of

direction. .According to Pascal's -aw, .pressure is transmitted. equalv

j in all di-_ections,

The resultant pressure, particle velocity, and pressure

gradient are obtained by adding the contributions from the two waves.

The Dressure. is

=PM (e c +e c )eJtt

By equation (8)

p = 2 pm cos kx e J (32)
Similarly at

u -Zj um sin kx e (33)

p- - sin (x e j CLt (34)
ax ix) sinkxe

where k x

Considering first the pressure, it will be seen that the amplitude

2 pm cos kx is a slnusoidal function of the distance x along the wave. At

the points where
w3wr 5 irkx = T 3f v -5 ""

i.e., where
X 3X 5X

x 4T ) ).

the amplitude is zero and there is no acoustic pressure at any tine. These

points are calltd nodes, pressure nodes in this case. At intermediate

points where

0=, -, X, L-,..

we find that cos kx = 1 I and the amplitude is a maximum. (A negative

amplitude, of course, signifies a phase reversal.) Locations of maximum
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amplitude are called loops. The pressure at: a loop is twice the pressure

of either of the two waves separately. This pressure field. which consists

of a stationary pattern of loops and nodes, is an example of the well-known

phenomenon of standing waves. The presence of such a condition in a

transducer calibration tank can lead to serious errors because the reading

of a measuring hydrophone depends, critically upon where the instrument

is located relative to the loops and nodes. Therefore, great care must be

taken in designing calibration facilities to avoid interference by reflect-ons

from the water boundaries.

A velocity-sensitive hydrophone will also experience loops and

nodes, but the pattern, as may be seen from (33) is different. The ampli-

tude of the particle velocity is proportional to sin kx instead of C*3kx.

Therefore, velocity nodes occur at pressure loops and velocity loops at

pressure nodes. The factor - j in (33) indicates that the particle velocity

oscillations (with respect to time) are 90 degrees out of phase with the

pressure oscillations.

Equation (34) shows that the pressure gradient has loops and

nodes at the same places as the particle velocity but that the oscillations

are 90 degrees out of phase.

As a final observation, it will be noted that since the pressure

and particle velocity are 90 degrees out of phase, the average intensity

is zero, just as zero power is dissipated in a purely reactive electric

circuit. This is readily verified by writing down the product of the real

parts of p and u
I = 4 Pm um sin kx cos kx sin 6t cos t

Note that 2 sin Wt cos (it = sin 2 Wt, whose average is zero. The physical

significance of the zero intensity is that equal amounts of energy are being

carried in opposite d.iections by the two waves.
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TECHNOLOGY OF UNDERWATER SOUND
kREVISED NOTES)

Physical Properties of Acoustic Waves in Water (cont'd)
C

B. Three Dimensional Waves

In this section we shall derive the differential equation in three

dimensions, expressing it not only in the rectangular but also in the

cylindrical and spherical polar coordinate systems. We shall discuss

briefly the characteristics of plane waves in two and three dimensions,

and the simplest case of spherical waves, that is, waves whose properties

are a function only of the radial coordinate and are independent of the

angular coordinates, We shall also say a few words about cylindrical waves.

1. The Differential Equation.

The physical concepts involved in the derivation of the

differential equation in three dimensions are basically the same as in

the one-dimensional case. The principal difference is that the mathematics

becomes somewhat more complicated.

The basic element of water on which we focus our attention

is an infinitesimal cube with dimensions dx, d'y, dz, ;ocated at the point

(x, y, z) in a rectangular coordinate system; These remarks pertain to

the static condition of the cube, i. e., in still water with no waves present.

When the wave is present, the cube is displaced from its static position

(x, y, z) to a new position (x+ , y+ 71, z + C), and its dimensions are

changed from dx, dy, dz to dx + dF, dy + d , dz + d. It should be noted

that the displacements associated with ordinary acoustic waves are

exceedingly small, so that

S<<x, 1q <<y, C <<z, dg<<dx, etc.

As in the one-dimensional case, the absolute static pressure is P0 and the

absolute pressure in the presence of the wave is P0 + p, where p is the

acoustic pressure.
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ciX ~ 64 S' c +d

The method of procedure is basically the Same as in the

one-dimensional problem. We shall formulate two equations: the first,

based on Newton's second law of motion, will relate the pressure gradient

to the acceleration of the little cube of water, and the second, based on

Hooke's law, will relate the acoustic pressure to the change in volume.

The final result will be obtained by saitably combining these two equations.

Since force and acceleration are vector quantities, we shall

have to deal with three components. Consider first the x-component. The

acceleration of the cube in the x-direction is caused by the differential

pressure between the two faces perpendicular to the x-axis. Assuming

that dg, d-q, dC are negligible in comparison with dx, dy, dz, this
Bp

difference of pressure is r dx, and the area of each face is dy dz. Thex p

net force in the positive x direction is - "- dx dy dz. The mass of the Cabe IS
pdxddh, ,id / tiv- cceIevahai

A is I/ t .' In the equation the factor dx dy dz appears on both sides

and may be cancelled out. Therefore the x-component is
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~-~* pg~--(101)
(which is identical with equation (I) of the one-dirnnsioral case). A

similar argument shows that the corresponding y- and z-components are

ay Patz (1?

P (103)bz • [

By the use of conventional vector notation these three equations can be

combined into a single vector equation. The displacement is in reality

a vector having components 9, tj, and C. If we denote this vector by d,

it may be written in the form

d = + i+ A + k(104)

A A A
where i, j, k are unit vectors pointing along the x, y, z axes. To simplify

the notation let us indicate time differentiation of d with a dot (second

derivative with a double dot). The three component equations may be com-

bined to give

J- k pd (105)

The commonly uced symbol for the vector differential operator on the

left-hand side of (102) is V (del)

3 + (106)

When this vector operates on a scalar function, such as pressure, the

resulting derivative is called a gradient. Thus

Vp = grad p

so that (105) may be rewritten in the form

grad p - p d (105a)

This is the three-dimensional equivalent of equation (1). The gradient is

a vector describing the rate of change of a. scalar function with respect to

space coordinates. Its direction is the direction in which the rate of change

is a maximum, and its nagnitude is the vatue of that rate of change.
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In the Hooke's law equation the stress, as before, is the

acoustic pressure. To find the strain vie note that the original (static)

volume is

dVo  dx dy dz

and the stressed volume is

dV=(dx+dt)(dy+d 1)kdz+d) (I+-)(l+ )(I,+

Since these derivatives are numerically very small in comparison with

unity, products of two or three of them may be neglected giving

approximately

dV-(1 + + dx dy dz

The strain is therefore

dVo -dV _ a a

dVo  b(+ !y +

and Hooke's law takes the form

p =-E ( + + a) (107)

The sum of the three derivatives above can be put in more compact form

through application of the operator '. It is in fact the dot product (or

scalar product) of the two vectors '7 and d. The dot product of two

vectors A and B is defined as follows

AxBx+A y + Az Bz

The dot product of ' operating on a vector function is called the divergence

of the vector. Therefore

d divd =++- +y (0

~x sy s 19

and (107) may be rewritten as

p -E div d (107a)
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We now have two equations (105a) and (107a) relating

p and d. 'We shall obtain a single equation in p by eliminating d. To do

this let us first take the second time derivative of (107a), obtaining

Ip
= - E div d (110)

Next, we take the divergence of (105a), obtaining

div grad p = - p.div d

Combining this with (110)yields

div grad p = = c tz

The divergence of a gradient is

divgrad = 7V -

A AA A A

+ i- k T + J- (111k

The final result is therefore

5Zp + aZp +Zp !Zp (112)

or, in vector notation

p c (tz

The differential equation (112) is an obvious generalization

of the one-dimensional equation (6). However, if one attempts to obtain a

vector differential equation in Jby eliminating the pressure, one does not

achieve a correspondingly simple result. It is noted in passing that an

equation of this type is satisfied by a function called the velocity potential

defined by the vector equation

-grad (veloc. pot. particle velocity
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The particle velocity is the time derivative of the displace-

ment
8d

u bt(114)

It is a vector whose components we shall designate as u, v, w.
A A

u = iu + jv + k w (115)

A useful relation between the particle velocity and the pressure is obtained

from (105a), namely

grad p -p (116)

One of the benefits which accrue from the use of vector

notation is that a vector has a fixed magnitude and direction independent

of the coordinate system in which it is described. The components are

different in different coordinate systems, but the vector is the same. The

differential equation (113), expressed in terms of the vector operator 7,

is an example. By using the proper expression for V?, we can describe

acoustic waves in any coordinate system.

The two most widely useful non-Cartesian coordinate systems

are the cylindrical and 9pherical polar systems. The cylindrical coordin-

ates r, 4', z are related to the Cartesian coordinates as follows

x = r cos
y r sin (117)
z= z

Let a be a scalar function and A a vector function. Then, in the cylindrical

coordinate system,

A 2a A 1 6a A 6a
grad a r -+ r - + z - (118)

div = I I bA+ bAz
divA -(rA r )+ L6 +--z (119)

r c)' r r () 6

and the wave equation is

(r )+ + (1p 0)

Ad,., A A, re Com oipei S if 61A tlSeelI- Ch
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The spherical polar cOordinates r, 0, q aie related to the

Cartesian coordinates as follows

x r sin 0 cos 4,
y-r sin Osino (121)

Here we have=rco0
A 6a A A 6a

grada r -+ - + #, (122)

_b'? ra 't_ idt. oor(gr,,g ) + jL .uI __. f cri *Ae) kirov A Y.% 6 '(-) +  (A# .-tin

V4 e ~v~~ ~~~ 1..a$ 
4 wr' 4ees

, ~~ ~ Vi poe ae,'I & sC IWl-.d."°^

+v

2. Three-Dimensional Plane Waves.

The solution of (112) in terms of sinusoidal functions is

N SP =Pm e or" c(ix + y +yzir (125) '

Substitution of this solution into the differential equation yields a relation

p among the three constants ,, S, y.

1 aZ + qZ + yZi 1 (126)

These three numbers "are thus the direction cosines of a line perpendicular

2.to the plane

a e x + Sy + yz = constant (127)

i: The plane defined by (12?) is a surface ol constant phase, that is, a wave-
front, and the line perpendicular to it indicates the direction in which the

wave is rovng Therefore a, , Y are the direction cosines ofl the

direction of propagation.
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The pressure gradient is found by taking derivatives of

(125). In vector notation the gradient is

ha +AS +A j u -(LX + By+ YZl
grad p j k pm (i j kY) e I C (128)

It is seen that the vector
A
ia + IS + ky

is pointed along the direction of propagation and has the magnitude

/cTsI7= 1

The magnitude of the pressure gradient is thus the same as for the one-

dimensional wave. (ftai is,

The particle velocity vector can be obtained from the pressure

gradient by dividing by - p and integrating with respect to time, as may be

seen from (116). Integration of the complex exponential with respect to

time yields a factor I/jw . Hence

u= -7- grad p (129)
ojp

or, from (128), since k = w/c,

'*PM ^ jw t0 i (OLx + Ry + yz
u=- -i+j +ky) e (130)

The particle displacement is obtained by one further integration, yielding

^p jW - i(ax+ y+yz0
J a(i+' + J + kY) e It (131)d =- pc

Again we see that both d and u point along the direction of propagation and

that their magnitudes agree with the previous results for a one-

dimensional wave.

3. Two-Dimensional Plane Waves.

The formulas take on a simple and useful form when we rest-tic

the problem to two dimensions. If we limit the motion to the xy-plane,

the direction cosines can be expressed in the form
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a = Cos e
= sine

Y= 0

For this case the time-space factor in the exponent takes the form
It-- (xCos 8+y sin 0)
c

and the vector indicating direction of propagation is
A
i cos 0+ j sine

These changes convert equations (125), (128), (130), and (131) to two

dimensions. We shall write out explicitly the equations for the pressure

and the two components, u and v, of the particle velocity

P = in e jw[t - (x Cos 8 +y sin 0)] 12

p pm eOS 8 (e cs8+- no) (132)

U Pm os 0 ejw - F (x cos 0 +y sin 0(133)pc

v = Pm sin ee e wt - Z-(xcos 0+y sin 02 (134)
PC

It is interesting to note that when 0 = 0 or 180 degrees, the

two-dimensional wave reduces to one dimension. When 0 = 0, the wave

travels in the positive x direction; when 0 180 degrees, the direction is

reversed.

4. Spherical Waves.

We shall consider only the simple case in which the waves

are functions of the radial coordinate only. Since only one of the three

space coordinates is involved, the problem is reduced to one dimension,

and vector notation will not be required. The differential equation (124)

reduces to
1 a 1 (135)
r 7-r (r z "'3 ) =  bt3
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The solution is

A j(wt -1r)
p=- e (136)r

where A is a constant. It may be readily verified by differentiation that

(136) satisfies the differential equation. The pressure gradient, as may

be seen from (122), is the derivative with respect to r.

5o A j(Wt -kr)
= I1 + jkr) e (137)

The particle velocity, according to (12.9), is

U jp ar

or UL A__ ej (w t kr) (138)
pcr Kr

Here we see two respects in which spherical waves differ

from plane waves. In the first place, the amplitude of the waves varies

with the radius. Mathematically speaking, these wave's spread out from a

point source at the origin, though in the real world they can be generated

by a small pulsating sphere. The pressure amplitude varies inversely

as the first power of the radius.

The seco,.-vd distinguishing characteristic is a phase lag

between the particle velocity and the pressure, indicated by ti e cornplex

amplitude in (138). This is analogous to the phase shift between the

current and voltage in an electric circuit containing both resistance and

reactance, and leads tc the concept of acoustic impedance, which will be

discussed below.

The (average) intensity is the average of the product of the

real parts of p and u. To simplify the notation, let

A (139)
Pm =-PMr

so that p=pm ej ( t kr) (140)
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The real pressure is then

P = P. :os (ct - kr) (141)

and the real particle velocity is

U = Pm Cos (to t - kr.) + p- sin (wt - kr) (142)
PC pk

The second term in (142) is 90 degrees out of phase with the pressure and

corresponds to the reactive component in an electrical circuit, which

dissipates no power. The average of the product sin (wt - kr) cos (wt - kr)

is zero. The average of cos Z (Ait - kr) is - and tho intensity is therefore

Iav 2pc (143)

or, in terms of the original constant A,

i ~A2 (44

Iav 2Pcr z  (144)

showing that the intensity varies inversely as the square of the distance from

the source. This is an illustration of the well-known inverse square law or

spherical spreading law.

The constant A may be evaluated in terms of the total power

radiated by the source, Since the intensity is the power transmitted

across unit area of a sphere of radius r, and has a uniform value over the

entire spherical surface, whose area is 4Tr2 , the total power is

4rr-rlav (145)

Therefore, from (144),

AZ = pcP (14)

In our study of plane waves we derived three equivalent

formulas (equation (31)) relating the intensity to the rms pressure and the

rms particle velocity. Recalling that

Prms = ¢Pm ; Urms /2- Um
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we see from (143) that one of these formulas,

la " rms (147)

,s valid for spherical waves as well. It is of interest to inquire whether

velocity of a spherical wtve is the absolute value of the coefficient of

the compL'x exponential i (138), i.e.,

urn pcr

A + P c (148)
pcr 0 k1 r2 PC 1r

Therefore
oc(I)

Prms PC urs (149)

Substituting this into (147), we obtain the results listed in the following

table:

Intensity, Iav

For plane waves rFor spherical waves

Prms Prms
PC PC

Prms urms
Prms urms

CUrms

pcuz 1

Thus the only generally ,al.'1 formula is (147).

A 4ew remarks are in order regarding the magnitude of the

ff ect. The ratio of the imaginary to the real term in the complex

amplitude of u in
IX
Ii -
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For a phase shift of 5 degrees, ,which may be considered negligible,

/kr is approximately 0. 08*. The corresponding value of r is

Zr= tO 087) '2'

At distances greater than a few wavelengths away from a point sound

source the phase shift due to the /kr term may be neglected and spherical

waves may be treated as plane wavus whose amplitude varies inversely

as the first power of the distance from the source and whose intensity

varies inversely as the square.

The phase relationships discussed above are important only

in te immediate vicinity of a sonar transducer. (or M6. o ,,a' so -- e-)

5. Cylindrical Waves.

The solution of the wave equation in cylindrical coordinates

(120) leads to Bessel's functions and is outside the scope ol the present

discussion. A useful approximate solution can be obtained, however, for
large values of the radial coordinate r. Let us assume that the wave

travels radially outward from an infinite line at r = 0 and is independent

of the other two coordinates, 4 and z. The differential equation for such

a wave is

(r (150)

The approximate solution is
A j(tat - kr)

Taking derivatives, we find for the left side of (150)

1 ( j k-A I j (ot -kr)
r r b(r r (1 j )e

and for the right side, since k = /c,

1 a% k2A j (wt - kr)

If (151) is to be a good solution, the condition which must be met is

1(152)
4kr40
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At distances beyond two wavelengths from the source, i.e., r > ZX,

we find

kr > 4 Tr

or I
4kqr2 < - z .0016

The error term is less than 0.Z percent. Therefore, at large distances

of many wavelengths the solution (151) is extremely good.

It 7a 6e . Jiowvj that the particle velocity of the wave is

A j(tt - kr) (153)

and the (average) intensity is

A2

'av c (154)

At large distances from the source, cylindrical waves may

be treated as plane waves whose amplitude varies inversely as the square

root of the radius and whose intensity varies inversely as the first power.

In the ideal problem we are considering the source is an

infinite line. The intensity (15+) is the rate of energy flow across unit

area of the 5$Oe of a cylinder of radius r. If P1 is the total

power radiated per unit length by the line source, then

Pl = ?rr lav (155)

and the relationship between the power and the constant A is
pPl

A2 : -- (156)
IT

We may also obtain a solution of the cylindrical wave equation

for the more general case where the direction of propagation has an axial

component as well as radial. In this case the pressure is a function of

z as well as r and the approximate solution for large r is

A jLwt - k (r cos 6 + z sin 0)1

When viewed in the rz plane, these waves behave like two-dimensional

-v plane waves traveling in a direction making an angle 0 with the r axis,
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except of course that the intensity decr.e-ses with the radial distance.

6. Unit Area Ac:,usic Impedance and Admitrance.

The analogy between acoustic waves and electrical circuits

has been mentioned several times. It has been pointed out that acoustic

pressure is the analog of an a. c. voltage, partirle velocity the analog of

current, and intensity the analog of electrical power. For plane waves the

ratio of pressure to velocity was found to be pc, a property of the medium.

This is the analog of an electrical resistance and is called the specific

acoustic impedance of the medium.

For spherical waves the ratio of the complex pressure to

the complex particle velocity is a complex quantity and iz thus analogous

to electrical impedance. We may therefore define an impedance by the

relation 3
P = za u~ (157)

where za is called the unit area acoustic impedance. The bar over the

za denotes a complex quantity. (Strictly speaking, p and u should be

similarly marked. ) Since the real and imaginary parts of Fa are

analogous to resistance and reactance, we may express the impedance

in the conventional form
za = r a j  (158)

The magnitude of the impedance is the absolute value of za ,

za = I'al =r5 + x9)

and rhe phase angle between the particle velocity and pressure is

t -1 Xa

= tan ra (160)

so that
ra --a

cos a; sin (161)

An alternate expression for the impedance is

Za = za e (162)
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The magnitude of the impedance za expresses the ratio of the amplitudes

of the pressure and partile velocity, and 14kawi-e, of course, the ratio

of the rms values.

Prrns = za urms (163)

The angle 4 measures the phase lag between the larticle velocity and

pressure.

To compute the intensity let us express p and u in a simpli-

fied form. All that is significant is that the rms values are Prms and

urrns and that they differ in phase by an angle 4. Hence we may write

u /2 Urms coS CWt

p =z Prms cos (wt + 4)

It is readily shown that the average value of the product is
ra (14

Iav Prms urms COS = Prms urms (164)

Substitution of (163) yields the two alternate forms

ra P rrns
Iav (l64a)

and

lav = rm (164b)

For a spherical wave "Fa is obtained from (136) and (138)

and is found to be 1 +
C = kr

kr kr

from which
ra 2c (165)

I

~PC

kr (166)Xa I
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Za (167)Za VI-r.I

+ -

rta r (168)

It is readily shown that these formulas lead to the results derived
pre v, iou z¥y •

The form in which the pressure and'particle velocity are

expressed in (136) and (138) suggests a more natural.interpretation in

terms of the complementary concept of admittance. In electrical circuit

theory admittance is defined as the reciprocal of impedance, so that in the

acoustic case we have

u =jaP (169)

where is the unit area acoustic admittance. The real and imaginary

parts are the conductance ga and the susceptance ba.

a = ga+J ba (170)

C a t Ya = laf : /ga + baZ (171)

Comparing the admittance with the impedance we see that

" 7 a = 1 1 ra- (172)
"Ya = ---- r +17a)

2 a ra+jx ra + xa

Therefore
ra

g = raZ+xa z  (173)

ba a (174.)
aa

and ba
S=-tan - I b (175)

ga

ba
cos * = - ; sin* = -- (176)AYa Ya

a Ya e 'J (177)
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In terms of admittance the pressure, particle velocity, and intensity are

related thus

Urms = Ya Prms (178)

'av = ga Prms (179)

ga Prms urms (179a)

ya
= -Pm Urm

Ya
ga rms (179b)

For a spherical wave the admittance takes on a simpler

form than the impedance.

(1 (180)Ya PC k

ga = -r(181)

PC

a pckr (18z)

1 I 1

(183)

It is readily i3how-a that these formulas lead to the same results as before.

7. Acoustic Impedance and Mechanical Impedance.

The concept of unit area acoustic impedance (and admittance)

has arisen in connection with a study of the propagation of acoustic waves

through a homogeneous medium (water). The sonar designer is faced

with another problem, the interaction between the water and acoustic hard-

ware. In wor-king with mechanical radiating elements having a finite area,

one encounters the concepts of force and volume velocity. The relation-

ship between the force on a transducer face and the acoustic pressure of

the adjoining water is obviously

F =pA

where A is the area of the face. The volume velocity, which is the total

volume of water displaced per unit time by the area A, is uA.
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Two types of impedance are encoiuntered in the interaction

pressure p Zaacoustic impedance ==-
volume velocity uA A

force =p_A A.
mechanical impedance frtice veAlt

particle velocity u

8. Noise Pressure; Equivalent Sine Wave Intensity

Acoustic noise is a random vibration which may be considered
as a composite of sinusoidal waves of different frequencies, travelling in

different directions. The frequencies are spread out over a continuous

spectrum (discussed later), and in general the directions are spread

out continuously in space. When a pressure-sensitive hydrophone is

placed in such a sound field, the reading it gives is the resultant of the

contributions of all frequencies within the bandwidth of its response.

To investigate the nature of this process we shall use a

simple-minded approach. We shall first consider two plane waves of

different angular frequencies, whose rms pressures are Pi and p2. The

instantaneous pressures will be denoted by the symbols Pil and Piz. If Pil,etc.

we restrict our attention to a fixed location in space, the space coordinates

in the phase angle will be constant, and we may write the instantaneous

pressures in the- simple form

Pil = /2 Pl cos (Oit + )

Pi2 =/2 P2 cos (P02 t + +Z)
The square of the resultant instantaneous pressure is

" (nil + Pi?), =  Pl z c0s2 (&-qt +  I )

+ 2plP2 cos (W1 t + ) cos (eozt + 2) + P2 z cos2 (w2 t +

In computing the time average of this quantity, we note that the square of the

cosine averages to I while the cross term averages to zero if the two

frequencies are not the same. The latter statement may be proved from the

trigonometric identity
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cos (4)1t + +1) Cos (&Jzt + +)= cos (0j + )t + ( l +

+ coB - w2 )t + - +2)]

Both terms on the right average to zero so long as e .i w'" The

resultant mean square pressure of the two waves is therefore

p2 = pl + P 2
2

If there are present additional waves of other frequencies,

the mean square value of the resultant of all of them may be computed in

a similar way, and all the cross terms will average to zero, leaving

p2 = pl2+p 2
z +p 3

z + .' =.Pi2  (184)

The rms resultant pressure is of course the square root of this. Thus,

when waves of different frequencies are present, a pressure-sensitive

hydrophone measures not the sum of the pressures of the individual

waves, but the square root of the sums of the squares.

If both sides of (184) are divided by pc, we obtain

2 P12  p 2 +P3 2P(15p' _ l + - + ... (185)
PC pc PC PC

The individual terms on the right-hand side of (185) represent the

intensities of the respective component waves. If all these waves were

traveling'in the same direction, the sum would represent the actual

intensity of the composite wave. Since, however, this is not the case

in a noise field, the sum, p2/pc, does not represent the intensity of a

real physical wave. It is called the equivalent sine wave: intensity. It is

merely a hypothetical intensity inferred from a presaure measurement.

As indicated above, a noise field consists of wa-,es

traveling in all directions. If, fpr example, we had an ideal transducer

having a very narrow beam with no side lobes, we should receive a finite

amount of energy regardless of how we orient the transducer. If the

characteristics of the noise field are such that we receive the same amount
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from every direction, the noise field is called isotropic. Ambient sea

noise in the near-surface region is approximately isotropic.

C. Waves with a Continuous Distribution of Frequencies.

1.. Spectra

Many waves encountered in the sea are not simple sine

waves; they are complex in form. As indicated previously, a complex

wave may be considered as made up of a large number of sine wave

components, each of a different frequency. The distribution of these

components is called the spectrum of the wave.

If the spectrum consists of a finite number of discrete

frequencies, i. e.., not a continuous distribution, it is called a line

spectrum.

If the spectrum has a continuous distribution of frequencies,

it is called a continuous spectrum. Those components which lie between

any two specified frequencies, fa and fb, are said to occupy a frequency

band. The difference betweenthe two frequencies, fb - fa, is called the

bandwidth. The ratio of the two frequencies, fb/fa is called the band ratio.

A band ratio of fb/fa 2 2 is called an octave. A band ratio of fb/fa 2 10 is

called a denary band. (It is frequently called a decade, although a decade

is properly defined as a band whose width is fb - fa = 10 cps. ) A band ratio
of fb/fa ) is called a one.-third octave band.

A more precise way of defining a continuous spectrum is as

follows. Suppose we had a hypothetical idea filter whose bandwidth we

could control as we desired. Consider first a line spectrum and begin

with a bandwidth large enough to encompass several of the discrete

frequencies; then reduce the bandwidth gradually. As soon as one of the

• queicls '16 i d out, we -notce a sudde drop in the transmitted

power. As this process is continued, the frequencies will be' filtered out
One at a tirn a uzutal, when the last one disappears, the power will suddenly

drop to zero. On the other hand, if the nature of the spectrum is such that

as we reduce the bandwidth the transmitted power decreases continuously,
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so that as long as the bandwidth is finite, no matter how small, a finite

amount of power is transmitted, the spectrum is a continuous spectrum.

2. Power per Unit Band; Intensity per Ulnit Band

Let Pab be the power transmitted in the frequency band

fb fa. Then the power per unit band is

Power per lim Pab dP
Unit Band =bfa " 0  fb a T (184)

A curve of power per unit band plotted against frequency for any given wave

is called the spectrum characteristic of the wave.

Similarly, if Iab is the intensity in the frequency band fb - fa,

the intensity per unit band is

Intensity per = =ab di (185)
Unit Band fb -f a-..0 b -fa df

The intensity per unit band may be expressed in another form.

Recall that the intensity is the power transmitted per unit area normal to

the direction of propagation. The relationship between power and intensity

is therefore
P dP

I = lim A dA (186)
A--o

where A is the area, and therefore

dU (187)

The term "intensity per unit band" is seldom used in under-

water acoustics. It is usually referred to as the "intensity in a I cps band. "

Although from a practical point of view these terms axe considered

equivalent, and nobody worries about it, they are fundamentally different.

The intensity in any band, whether I cps band or otherwise, has the

dimensions of intensity, which is different from intensity per cps.

Intensity is related to intensity per unit band in the same way as displace-

ment is reated to velocity. Also, when the intensity per unit band varies

with frequency, there may be a difference in the numerical values of the

two quantities.
49



3. Note on Units: For practical measurements the unit of

energy is the joule and the unit of power is the watt. These units are

defined as follows:

I joule= 10 7 erg

1 watt = 10 erg/sec.

These various quantities are summarized in the following

table:

Quantity Symbul Relationship Practical Units.

Energy W joule

Time t sec.

Area A cm 2

Frequency f cps

Power P dW/dt watt

Intensity I = dP/dA watt/cm Z

Power Unit Band U = dP/df watt/cps = joule/cyc

Intensity Unit Bana J = dI/df = dU/dA watt/cm Z cps = joule/cm2 cyc

The co:zeept of "per unit band" applies only to a continuous

spectrum. In the case of a pure sine wave, a finite amount of power is

transmitted at a single discrete frequency. In this case the power per unit

band is infinite, the bandwidth is zero, and the -roduct of the two is finite,
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TECHNOLOGY OF UNDERWATER SOUND
(REVISED NOTES)

Relative Magnitudes and Transmission Loss P

Note: All pressures referred to in this section are to be interpreted as
rms values and all intensities as average values.

f . Introduction

To introduce the subject, let us consider the process involved in echo-

ranging. Sound waves are generated by a transducer at S. Spreading out

from S, they travel to a target located at T, at a distance r away. Some of

this sound energy is scattered by the target. It spreads out from T and a

part of it travels back to the transducer at S.

In the conventional sonar equation the transmission of energy is described

in terms of the intensities at certain key points along the route, beginning with

the so-called source intensity, or index intensity, at a standard distance of

one yard from the source. These are as follows

I 1  = intensity of outgoing pulse at 1 yard from source

I r  = intensity of outgoing pulse at target

I1 ' = intensity of reflected pulse at I yard from target

Ir = intensity of reflected pulse received at transducer
(echo intensity)
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To compute the echo intensity we begin with the source intensity and pro-

gzessively multiply by intensity ratios

I 11 2

Ij' ''~ = .!,.(201) t
Let us illustrate with some typical numerical values.

6.3 0 -3 •4.0 x I0- 8 • 5.0 x 10 - 4.0 x 10-8 = 5.0x I0 "16 (201a)
watt/cm z  watt/cmz

Numerical computations could be greatly simplified if we were to

express (201) in such a form that the answer is obtained by adding terms

rather than multiplying factors. This is the property of logarithms, since

log ab = log a + logb

Strictly speaking, however, whenever we are working with physical quartities,

we must always take logarithms of dimensionless ratios. Examination of

(201) or (ZOla) shows that we are starting and ending with actual values of

I intensity - II watt/cn z and Ir' watt/cmz. The transmission processes

between the two are expressed as dimensionless raf4os. We can express

Ii and'Ir' also as dimensionless ratios if we select some arbitrary value of

intensity Io , as for example

10= 1 watt/cmz

and divide (201)'by this. Thus

I r 1 Ir' r(( {)(V .-(T)=(y ) (202) ,

We may now take the logarithm of (20Z). However, instead of working

4i with the logarithm directly, it has become standard practice to multiply the

logarithm by 10. Common logarithms (to the base of 10) are used for this
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purpose. Equation -(Z02), andifts numerical, example thus. become

I r *i- 'I r I

i0log + 10log +10 log +10 1g0-, -10log (Z03) V
and (approximately)

-2Z -74 + 17 -74 -153 (203a)

The units in which equations (202) and (ZZa) are expressed are called

decibels. We shall have more to say about this in the following paragraphs.

2. Relative Magnitudes

The transmission of power in acou'stic systems, as illustrated by the

previous example, is expressed in terms of ratios of physical quantities.

Once the actual value of the power (or intensity) at one point in the system

is specified, th- actual values at other points can be obtained by ratios.

Such ratios are called relative magnitudes. The actual values of the quaptities

are called absolute magnitudes.

3. Transmission Loss - The Decibel

The unit employed by electrical engineers for measuring the trans-

mission loss in a power transmission system is the decibel. If Pin is the

input power to any given part of the system and Pout is the output power

from the same part, the transmission factor, which is really a measure of

the efficiency, is Pout/Pin, The transmission loss, N, expressed in decibels,

is defined in terms of logarithme to the base 10 as follows:

P Pin out
N = 10 log out/in 10 log- (204)

Note that to obtain the transmission loss we take the logarithm of the
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reciprocal of the :transmis sion-factor. A positive transmissionjoss means

thatthe output power is less than the input power.

The ratio r corresponding to one decibel is

10 log r = I decibel (db)
or

r- I0
0

_ 
1  1. 2589 (205)

The relationship between ratios and decibels is illustrated in the following

table:

Ratio db db Ratio

1 0 0 1
2 3.01 3 1.995

4.77 6 3.991
6.02 10 10.

5 6.99 13 i9.95
10 10. 16 39.81
I 0 13.01 20 lob.
50 16.99 23 i99.5

100 20. 26 398.1
200 23.01 30 1000.

etc. u~c.

Although it is convenient to express any ratio in terms of 10 times the

logarithm, the name decibel is properly applied only to ratios of energy,

power, and related quantities, such as intensity, power per unit band, and

intensity per unit band. In certain specific cases this application can be

extended somewhat. For example, the acoustic intensity can be expressed

as pypc0 The ratio of two intensities I and IZ is

12 P c
Z= 2' IP C.

y sipc

So long as we are dealing with sea water where changes in p and c are rela-

S tively small, the specific acoustic impedance may, for intensity computations,
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be considered to be constant. Therefore, within this ap-proximaticiv,!

2 _P(206)

so that 2 p2
N : l0log 11 l0log P-

or
P2

N = Zlog -Z db (207)
P1

Remember that when we wish to express a transmission loss in terms of a

pressure ratio, we must use 20 log (pressure ratio), because the intensity

is proportional to the square of the pressure. Remember also that these

formulas do not appiy to the transmission of sound across boundary between

two media having different values of pc, such as water and air.

It should be noted that the concept of the decibel has physiological

significance, because the response of the eye and ear to changes in light and

sound intensity is logarithmic.

There is no generally accepted terminology for expressing 10 log of.

ratios in general. Dr. J. W. Horton in hiG book, Fundamentals of Sonar,

suggests the name logit. For example, suppose we wished to consider the

ratio of two frequencies, fl = 20, 000 cps and f 2 1000 cps. Then we would

say

fl 2,0
10 log A 2  10 log O 10 log 20

1,000

13 frequency logits

Similarly, for the ratio of tro velocities, v= 30 knots and v2 = 10 knots,

we would say
v 2  30

10 log -- = 10 log L 4.8 velocity logits
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In these notes we shall rarely,use the term logit. We shall from tim'eto timre

have occasion to work with logarithmsof bandwidth (frequency) ratios, and

since these-will be associated with intensity computations, we shal'foiow .

the common practice of calling them decibels.

4. Transmission Level

I The concept of transmission 10ss is associa.ed only with a ratio of

transmitted powers; it says nothing about the absolute magnitude of either

power. If we wish to specily the actual power- at any point in the systen,

we must select some arbitrary reference value and work with the ratio of

the actual power to the reference power. For example, suppose the power

at some point in-an elect.rical transmission system is P watts and the

reference value is,_PoWAttAo Then the actual value of P is expressed in

terms of a ratio in the following manner
PF ( P-- o watts(28

Equation '(208) says that the a tual power P is greater (r less) than the

reference value •Po by a factor (P/(o)r When the power at this point is

expressed in decibel notation, it is called the transmission level or power

level and is written as follows:

L 10 log P- db//P° watts (209)

where L is the4 wdr level corresponding to P watts. We use a double

Olant line in this application to indicate that the symbol following it denotes

the reference value on which the ratio is based.
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Similarly, if we wish to express an intensity I in watts/cm2 re1ative to

a ffeence in-tensity 10 watts/cm2 , we write

I-Io wVa.tTS/crM2 (210)

a nd

andL =10 log L dbl/10  watts /cm 2  (ZU

I

In this cas the level is called an intensity level.

To illustrate this concept, let us return to the example in section I above-

Note that in (201) and (Z01a) the in.(d- 11 ±sity I I and the echo intensity If

appear as ab--_'."A,-; values, whereas the other factors appear only as intensity

ratios. In order to express this equation in decibel form, we first divided

both sides by the reference intensity Io watts/cm, as shown by (202), and then

took logarithms, obtaining (203). The nermerical values shown in ((03a) are

based on I.10 Watt/cm 2 .

j _The first term is an intensity level

L 10 log _= -2 Zdb,/watt/cm?-*

10

The other ternis on the left are pure loss terms and are expressed simply as

db (no reference). Thus, for the outgoing wave the transmission loss is
1 r

N -I01og ri= -10 log (4x 10-8) =+74 db

(Note that in the sonar equati,.n the loss is subtracted from the source level.)

Finally, the term on the right side of the equation is an intensity level

II
z z 10 log (Y-) = -153 db//watt/cm

(0
Note also that in an algebraic equation such as (Z01a) the units must

balance; watts/cm2 on the Left must equal watts/cm2 on the right. Similarly,

in the decibel equation (203a) the units of the reference nvust balance. There

* When the number of units is not specified for the reference, it is under-
stood to be one, just as in algebra x stands for Ix, Thus, db//watt/cm z

sjignifies db//1 'Watt/cmI .
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is one term on the left with a reference in.. watts/cm?, and one term on the

right with a similar reference. All other terms are purely relative. In

other words, a level.-ust equa-, a level.

In the above example wm £xay find the level at any intermediate point- in

the system. For example, at the point where the outgoing wave strikes the

target the intensity is

Ir .3 . 10 3 
. 4.0 x 10-8 = 2.5 x 10-10 watt/cma

and the intensity level is

Ir 2.5 x 10-10
Lr = 10 log- 10 log 1 : - 96 db//l watt/cm.

This same result can be obtained more simply by starting with the source

level and sub.kacting the transmission loss. Thus

L r = -22 db/A watt/cmz - 74 db

= -96 db/A watt/cmZ-

In fact, the intensity level at any point in the system can be obtained by

starting with the source level and progressively subtracting losses up to

t that point.

K 5. Sound Pressure Level

Most acoustic measurements are made with pressure-sensitive hydro-

phones and are expressed units of pressure (microbars). For this reason

it has become the usual practice in underwater acoustics to refer levels

to a pressure of one microbar (although some measuring instruments are

il calibrated in terms of 0. 0002 rnicrobar). If we let Po represent the

reference pressure, then from (207) we see that the level is expressed as
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L 20 log -- db//po Ab (212)
PO

A level expressed in this manner is called a sound pressure level. For a

single plane wave traveling in a single direction, sound pressure level andrintensity level are equivalent and can be converted from one to the other by

adding or subtracting the proper number of decibels. In more complicated

noise fields, as has been pointed out earlier, the pressure measured by a

hydrophone is in many instances the resultant pressure due to Ynany waves

traveling in different directions, and the intensity p2/pc computed from this

pressure does not represent an actual energy flog in any one direction. It

is termed an "tequivalext intensity (equivalent to the intensity of a single

bypothetical wave having the same pressure). In such a sound field the rela-

tion between the sound pressure level and the equivalent intensity level is to

'be interpreted in the same manner.

It is interesting to note that in air acoustics the reference used for

intensity levels is 10 microwatt/cm2 (or I0-9 erg/cm-sec), while the

reference for sound pressure level is 0. 0002 dyne/cm zi (or microbar). Since

the specific acoustic impedance of air under standard conditions is pc = 4?

specific acoustic ohms, the intensity corresponding to this pressure is

p (.0002)2 =. 0.95 x 10-9 erg/cmZ sec
Pc 42

The two references are thus almost identical.

In underwater acoustics, levels are almost never referred to intensity

units. They are commonly expressed as sound pressure levels, usually

referred to a pressure of one microbar, and occasionally 0. 0002 microbar.
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The latter is rather widely' used in reporting radiated noise nieasurements

of ships, apparently because the measuring equipment is calibrated that)
way. The . 0002 jb reference is a carry-over from air acoustics.

i 6. Note Regarding the Pressure ReferenceI
Although the practice of referring transmission levels to pressure units

is widely used, it leads to some con-Fusion -- or at least to some pedagogical

problems -- when extended to the coacept of spectrum level (which will be

discussed below). It turns out that the ressure referenc'Ais applied to a

physical quantity which is not pressure at all, but something different.

In the discussion which follows we shall point out this difficulty and shall

overcome it by using a slightly different notation which, although more

complicated, reflects more accurately the physical concepts involved.

Since the actual energy flow in an acoustic wave is proportional to the

t square of the pressure, it is more logical to work in units of p? than p,,

I and equation (212) is ,--,.ore logically expressed in the form

L=10 log b/? b(23
p0

For a reference pressure of 1 jib, we are expressing intensity levels in

decibels referred to I pbz

The only difference thus far is that we use I jb? in place of I jib. No other

change is involved. The number of decibels is the same.
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7. Change of .Reference

When the same level (i. e., the level corresponding to the same actual

intensity) is expressed in decibels referred to different references, it will

have different numerical values. To change from one level to another we

must add or subtract a constant.

Let us consider the change from I jib to 0. 0002 pb. Suppose the

pressure is I pb. Then the level referred to I pkb 2 is
I1

LI pb =10 log -- 0 db//l pb 2  (214)

and the level referred to (0. 0002 jb )Z is

1

' .0002 jib = 10 log (.0002)2

= 74 db//(. 0002 jb) (215)

From this we see that levels expressed in db//(. 0002 pb) z are 74 db higher

than levels expressed in db//1 pb2 . (The 1 in front of pb z may be ignored.)

A level of, say, 10 db//b z would be equivalent to a level of 84 db//(. 0002 pb) z .

Next, let us consider the change from 1 jb? to 1 watt/m Z. In sea water

with a specific acoustic impedance of 154, 000 ohms the intensity correspond

ing to one microbar is

pc 1 -6.5 x 10 - 6 erg/cm2 sec (216)IPC- 154, 000

6.5 x 10- 13 watt/cm? (216a)

The reference intensity is

Io I watt/CMZ

so that the level corresponding to 0 db//pb- is
Lw/cmi 10 log = 10 log (6.5 x 10 1 3)

10
i ~~ ~ T.  - 1, 9 db//wvatt/cm z  (217)

6,1
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Levels referred to 1 watt/cm Z are approxiately 122 db lower, than, levels

referred to I -pb2 .

8. Spectrum Level; Band Level

The energy distribution in a continuous spectrum is described in terms

of the intensity per unit band, J, which we have defined as the rate of change

of intensity with frequency"
~dI(i)

dl= (219)I
In terms of watts, J has the dimensions watt/m 2 cps (or its equivalent,

joule/cm z cycle). The decibel equivalent of intensity per unit band is called

the spectrum level, Ls. It is defined by the relation

-o.log - db//Jo (220)LC Jo

If J is expressed in the units indicated above, the logical reference value is

Jo 1 watt/c-m211 cp~s

To A the relation between spectrum level and intensity level, we see

that the amount of energy being propagated depends upon the range of

frequencies involved, that is, upon the bandwidth. The intensity I in a

band of frequenpies from fa to fb is obtained by integrating J. Thus
fb

I = J Jdf (221)
fa

For the present let us make the simplifying assumption that J is constant,

so that

I = J (fb - fa) JW (222)

where
fW b" f he bandwidth
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If J is not constant, we could use an average value over the band in (222).

T-he intensity in a band is thus the product of the intensity per unit band

and the bandwidth. The reference quantities are related by the equation

f = JO WO

If we select

Io = 1 watt/cmn

and Jo = 1 watt/cm Z cps

we see that Wo = I cps

A dimensionless equation is obtained by dividing by the reference values

I J W
Io Jo Wo

The corresponding levels are
I J W

10logo 1 0log j + 10 log
0W-

or, since WO has a numerical value of 1,

L = Ls + I0 log W (223)

In the above expression L is the band level, or intensity level in the band

of width W. Strictly speaking; the terin 10 log W should be expressed in'

frequency logits//l cps, but it is usually expressed simply in decibels.

In the preceding discussion we have defined the various physical

quantities in terms of watts and have carefully avoidee the use of microbars.

We must now return to the real world. By virtue of the relation

D
Z

I = I_
pc

the intensity in any band is proportional to the square of the pressure in that
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band. This is true for any number of small bands which make up a large

band. If we were to measure the pressures pl, P2' p3 . in each of

the small bands, and the resultant pressure p Jzx the large band, we should

find that
p 2 = + P2 +P? +o

If we were to break up the largo band into more and more bands of smaller

and smaller bandwidth, we should ultimately arrive at the concept cf

(pressure)2 per unit bandwidth, and this quantity would be proportional to

tli intensity per unit bandwidth, as indicated by the following equation.

(pressure)2 per unit band4
pc (224)

Urfortunately this quantity does not appear to have any official recognition

and no symbol exists for it, but nevertheless it is the fundamental basis

upon which spectrum levels (when expressed in terms of microbars) rest.

For pressures measured in microbars the unitsAare plb2/cps. Thus, the

pressure equivalent of equation (22) is

pa = [(pressure)' per unit band]-W (2251

and the units are

pb2- (pb 2/cps).cps

On the basis of the above discus.iion, we see that intensity levels should

be expressed in db//p b2 and spectrum levels in db/Ab2/cps, and they are

related to each other by equation (223), which is reproduced below with the

reference!specified.

L db/4b z = L s db//%b/cps + 10 log W (2ZZa)
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In most :of the literature on underwater acoustics both intensity levels

and spectrum levels are expressed simply as db//gb. Although the

meaning of these symbols is understood by workers in the field, and the

objection to them is probably not serious enough to justify a change, they

are nevertheless sloppy and can be confusing to newcomers. It is

encouraging to see the more precise notation being used by a few writers.

The same conversions apply to spectrum level as to intensity level,

namely

Ls db/A(. 0002 pb)/cps = Ls db/ xb/fc74 db (226)

Ls db//watt/cmz cps = L s db//byCp-121.9 db (227)

9. Band Level Correction

In the preceding discussion of spectrum level and band level we made

the assumption that the intensity per unit band, J, is constant over the

band or, if not, we assumed we knew the average value. In real noise

fields J is not constant, nor is its average value accurately known. The

normal practice is to use the value 3m at the geometric mean of the upper

and lower frequencies of the band; that is, at the frequency fm such that

fm= Vfa b (228)

where b and a refer to the upper and lower frequencies, respectively.

One does not use the actual 3, of course, but the corresponding spectrum

level. For example, if in equation (223) we wished to compute the intensity

level in a bar.d from 1 to 3 kc, we should use the spectrum level at a

frequency of 1.73 kc
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If the spectrum level at this frequency were -35 db/ b 2/cps, the intensity

level in the band would be

L = -35 + 10 log 2000 - -2 db/Ab2

Although this procedure is sufficiently accurate for most practical

applications, it is in general only an approximation, as we shall now show.

Over most bands of practical interest, J can be considered as varying with

some constant power, n, of the frequency. Ambient sea noise, for instance,

varies as the -1.7 power over a wide range of frequencies. Let Ja, Jb,

and Jm denote the values of J at frequencies fa, fb, and fm. The relation

between J and f may then be expressed in the form

1 3 ()n (229)
Ja fa (Z9

The average value of J over the band from fa to fb is

fb
y = JA i' n dfIfb fa) fan fab

which integrates to

Ja (fb n+f+ l)

= (n + 1)(fb -fa) fan ifn -l

or= a L b if n= -1
fbf loge fa)

The Value 4,Tt 15 found[ y jo(2q) f n:

Jm frl
3 

(230)iT f# n
a a -
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To simplify the writing, let

j K= k'*231)

so that = Kfn (232)

and fa = f1n/k (233)

Substituting (230), (232) and (233) into the expressions for J, we obtain

K2 _ (n+l)Kn1 'J if n -1 (234)

or

= KzK  2 logeK ifn= -1 (235)

The factor in brackets represents the -correction which must be applied

to Jm to obtain the correct average value 3. Let this factor be called

F(K, n), and let the spectrum level at the mean frequency fm be called Lm,

Then the band level equation (223) becomes

L = Ln + 10log W+10logF (K, n) (236)

The last term, 10 log F(K, n), is called the band level correction. The

correction is zero when

n=0 or -2

as may be verified by substitution in (234). The condition n = 0, of course,

corresponds to J = constant. The correction function 10 log F(K, n) has

been plotted by Horton in Fundamental?, of Sonar. The value of n for most

roise sources lies becween 0 and -3, ^hd if the bandwidth does not exceed

an octave or so, the band level correction amounts to less than, one decibel.
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10. Squrce Level; Index Level

In underwater acoustic systerns the magnitude of the acoustic

output of asound source is specified ih terms of the intensity at a standard

distance ofone yard from the scurc.i - This is kncwn a3 the source intensity,

or indexihtlnsity of the source. Thecorresponding transm"ssibftre... "l

called the"source level-or index level.

For the present we shall limit the discussion'to omnidirectional

sources, that is, sources which radiate equally in all directions, so that

the intensity has a uniform value over the entire surface of any small

sphere surrounding the source. Let P denote the total power in watts

radiated by the source, I, the source intensity in watts/cm2, and r, the

standard 1 yard reference distance, expressed in cm. Then if the source

is a point source '(or if its dimensions are very much less than ons yard),

the intensity is equal to the ratio of the power to the area of a sphere of

radius rl (see equation (145)). Thus

11 P (237)

Substituting the numerical value of r 1, i.e.,

r= I yd 91.44 cm,

into (237) yields for the source intensity

- P 5 M2

4T¢ (91.44)f = 0. 952 x 10 p watm 2

The source level S. for an omnidirectional source is
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s o  10 log1-O  (10 = l'watt/cm)
0

s o = 0 log P-50. 2 db//watt cm? (238)

To convert to db//Pb2 we add 121.9 db, obtaining

So = 10 log P + 71.7 db//pb2  (239)

The above formulas for So apply only to omnidirectional sources. The

modifications required for directional sources will be derived later.

Even though these results were derived for point sources, they may

be applied to extended sources as well, so long as their significance is

understood. The concept of source level is concerned with the process of

describing the flow of energy from a source to a distant receiver. At

distances of many hundreds or thousands of yards, the waves from even a

large source appear to be spreading out from a point. The standard reference

distance is to be interpreted as being one yard from this apparent point source.

Note on the Bandwidth of a 1/3 Octave Band

The bandwidth of any band may be expressed in terms of the geometric

mean frequency fm and the ratio X by subtracting (233) from (232).

W = fb-fa = (K-4)fm (240)1/6
The value of K for a i/3 octave band is 2 and the bandwidth is

W = (2 1 - 1/3)fm = 0 2 3 1 6 fm (241)

or

10 log W I0 log fm -6.4 db (242)
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TECHNOLOGY OF UNDERWATER SOUND
(REISED NOTES)

The Propa gation of Underwater Sound

A. Propagation Loss

1. Definition

The flow of acoustic. energy from a source to a receiver is

described in terms of the intensity at a standard distanc.e of one yard from

the source, and the reduction in intensity between this point and the receiver.

The transmission level corresponding to the source intensity is called the

source level and has been discussed earlier. The transmission loss

corresponding to the reduction in intensity between the reference point and

li the receiver is called the 'otation loss.

If I, denotes the source intensity and I the intensity at any

distant point, the propagation loss to that point is

[!Nw = O log (301)

The level L at the distant point is obtained by subtracting the propagation

loss from the source level So,

L =S o - Nw  (302)

It should be noted that the choice of the standard reference

distance is purely arbitrary and in no way affects the value of the intensity

level at the distant point. The choice of one yard is convenient because

ranges are customarily measured in yards (or thousands of yardsl. If a

different reference distance were chosen, the numerical values of both the

source level and the propagation loss would be changed by the same amount.

For example, if a distance of 10 yards were selected for the reference, the

intensity at 10 yards would be IP00 as large as the intensity at 1 yard

(inverse square law). The source level would thus be 20 db smaller, but

the propagation loss would also be Z0 db smaller, so that the difference
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between the two, which gives the level at the distant point, would remain

unchanged. A reference distance of 1 meter is sometimes used in scientific

2. General Discussion

The propagation loss is affected by a number of factors, of

which one of the most important is the spreading loss. As the waves spread

out from a source, the surface across which the energy is being propagated

becomes larger and larger. Even if no energy is lost by absorption or

scattering, the energy becomes diluted as it spreads over larger and

larger areas, and the intensity is correspondingly reduced. Near a source

the .3preading is spherical and the intensity is proportional to the inverse

square V VIe distance. _Akt larger distan.ces the'o Spreading is affected by

refraction, which causes the rays, or paths along which f e waves travel, to

curve. Refraction is capable of producing drastic changes in the spreading

loss, including focusing effects and shadow zones. This phenomenon will be

discussed in a later section.

A second factor affecting propagation loss is the attenuation

loss. Attenuation usually refers to a gradual loss of energy from the wave

as it moves through the medium. Attenuation is caused both by absorption

and scattering. Absorptiun refers to the process o! converting acoustic

energy into heat and is associated largely with frictional effects. Scattering,

as the name suggests, refers to the process whereby objects in the water

(bubbles, marine life, or other foreign particles) cause a portion of the

energy in a wave to be deflected in various directions in the form of

incoherent radiation and thereby rendered useless. The processes included

under the heading of attenuation normally possess the characteristic that the

rate cf loss per unit distance traveled is proportional to the amount of

intenoity present, and this leads to the familiar exponential decay law. The

attenuation loss is dependent upon the acoustic frequency and is very s ver3

at high frequencies.
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Propagation loss is also affected by reflection from the

strface andbottom of the ocean. This process is more correctly described ,

as scattering, since when a sound wave impinges on either of these bound-

aries, a certain amount of energy is scattered in all directions. Usually, V
however, the greater, part of the scattered energy is scattered forward in

the direction. of specular reflection (angle of reflection equal to angle -of

incidence). Multiple reflections, especially in shallow water, tend to produce

cylindrical spreading at ranges appreciably larger than the water depth.

There is a propagation -loss associated with each reflection

from the ocean boundaries. This loss is due in part to the scattering of

sound in other directions and in part to transmission of a portion of the energy

into the adjoining medium. The reflection loss at the surface, which is due

almost entirely to scattering, is influenced by the roughness of the surface

and is therefore a function of the sea state. It tends to be rather small,

of the order of 1 db or so under most conditions. The bottom loss is strongly

affected by the nature of the bottom, the angle of incidence, and the acoustic

frequency. Hard bottoms, such as sand and rock, are good reflectors. Soft

mud is a poor reflector. Roughness causes losses due to incre2sed scattering.

Bottom losses are usually small at angles of incidence near grazing but in- j
crease rapidly at steeper angles. Beyond 20 to 30 degr,ees they tend to level

off. The .oss increases with increasing frequency. Bottom losses can be

quite severe - sometimes as much as 20 db.

The reflection loss at a boundary causes a discrete jump in the

propagation loss. it is a lump-sum item which is added to the propagai:ion

loss each time a reflection occurs. However, in shallow water and in long-

range transmission of low frequency sound, where a large number of

reflections occur, the discrete losses are practically equivalent to a

continuous attenuation process and are often treated as such.
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3. Spreading Loss

In this paragraph we shall consider only the ideal cases of

spherical and cylindrical spreading, postponing a discussion of the effects

of refraction until a later section. For spherical waves the intensity is

inversely proportional to the square of the distance from the source. Let

Il represent the source intensity at the standard distance r 1 (= 1 yard), and

let I represent the intensity at any distance r (normally hundreds or thousands
of yards).

Then by the inverse square law the intensity ratio is
I rlz
I(303)

and the spreading loss is

I! r

Nspr =10 log- = 20 log r

If r is measured in kiloyards (thousands of yards), then

r 1 = -I03 kyd

and

Nsp r = 60 + 20 log r db (304)

Notb that spreading loss (and propagation loss as well) involves

merely a ratio of two quantitiee and ia therefore exresaed simply

in decibels without any reference.

Under certain conditions the propagation of sound in the ocean

can be represented fairly uell with a model in which the spreading is

sf'rce-0 out to some range r 2 , and cylindrical beyond. For a cylindrical

wave the intensity varies inversely as the first power of the distance. If

I-) is the intensity at the range r2 and I is the intensity at the range r

(> r), then
12 rl r Z

Ir- and -f•I 12, r
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so that rI 1 rj r rIB

I2 I I? r r rzr

and the spreading loss is

r r
Nspr =20 log- + 10 log r

or, if the ranges are expressed in kiloyards,

Nspr 60+10 log r2 + 10 log r db (305)

4. Attenuation Loss

In the attenuation process the ioss of intensity dI which occurs

when the wave traverses a distance dx is proportional to dx and to the

existing intensity I. For a plane wave traveling in the x direction the

reduction is

dl - a' I dx

where a' is a constant of proportionality. This differential equation solves

to

!oge I -a' x + constant

The constant of integration may be evaluated if we know the intensity I1 at a

fixed point x1 . Thus

g _ a' (x -Xl) (306)
log e Ii.

(x x1 )o I3 - 4 '(x - X1) (307) :

or e =307

The intensity decays exponentially with the distance traveled.

The attenuation loss between xl and x is
1Najt =0 log I- (308)

where the logaridim is taken to the base 10. The change of base is accom-

plished by the well-known formula
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• I1 Iv, II

log1 0 -- = (log1 0 e) (ioge - ) 0. 434 loge F (309)

Therefore, combining (306), (308), and (309)

Natt =6 (i log1 0 e)loge

S=4.34 a' (x - xl)

Let

a = 10 a' logl 0 e = 4.34 a' (310)

rThen the attenuation loss is

Natt = a(X-x 1 ) (311)

The coefficient a is called the attenuation coefficient. It is usually expressed

in decibels per kiloyard, dbA-yd. The distance x, of course, must be

expressed in kyd.

Although (311) was derived for plane waves, it may be applied

with negligible error to spherical or cylindrical waves in the ocean.

5. Combined Loss - Spreading plus Attenuation

Although we have treated spreading and attenuation separately,

Iboth effects are present together in the propagation of waves in the ocean.

If the index intensity is I, at the standard reference distance r I , the intensity

of a spherically spreading wave at distance r is obtained by combining (303)

and (307) 2
I r1  -a' (r - rl) (312)

The corresponding propagation loss is I1

Nw = 10 log T-

Nw =60+20 log r+a (r - rl)

In the usual applications to underwater acoustic systems we are concerned

with propagation over distances of the order of one or more kiloyards. Since

the reference distance r 1 is only one yard or 0. 001 kyd, it may usually be

neglected in comparison with r. Therefore, for practical purposes the

propagation loss for spherical spreading is
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Nw =63+20 log r+ar (313)

For the case of spherical spreading out to a range r 2 and

cylindrical spreading beyond, the spreading loss is given by (305), and the

combined loss is

Nw =60 + 10 log r 2 + 10 log r + ar (314)

6. The Measurement of Propagation Loss

Because the attenuation coefficient varies with the acoustic

frequency, it is advisable to measure propagation loss using sinusoidal

waves of a fixed frequency. To measure the propagation loss between two

points it is necessary to measure the intensity level at both points. The

level at the far point is measured with a calibrated hydrophone. The level

at the one yard point may be determined either by calibrating the sound

projector or by measuring with a calibrated hydrophone. When using the

hydrophone, it is of course not practical to measure the pressure at one yard.

Measurements are taken at some larger distance (still close enough that the

spreading is spherical and the attenuation may be neglected) and the inverse

square correction is applied.

7. Evaluation of the Propagation Loss Components

Froin a single measurement of propagation loss it is impossible

to determine how much of the loss is due to spreading and how much to

attenuation. In order to separate the one from the other it is necessary to

take measurements at a number of different ranges. In the general case

where the spreading varies as the inverselnth power of the range (n = 2 for

spherical spreading), the propagation loss is

N = 3 0 n+10 nlog r+ar (315)

The nature of the log function is such that it increases rapidly

with r at short ranges, but slowly at loig ranges. 4ie 10 n log r term tends

to be dominant at short ranges and the ar term at long ranges.
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Therefore, if we plot N. vs log r, we should expect to get 6

straight line having a slope of 10 n at short ranges. At longer ranges the

attenuation term will begin tc take over, causing the line to curve in the

direction of higher losses. The spreading loss component can be determined

from the slope of the straight-line portion of this curve.

On the other hand, if we plot Nw vs r, we should expect to get a

straight line with slope a at the longer ranges. At shorter ranges the

'spreading loss term will begin to take over, causing the loss to decrease

more rapidly than linear.

Typical curves showing these effects are given by J. W. Horton
in Fundamentals of Sonar, pp 78, 79.

It should be pointed out that conditions in the ocean are seldom

conducive to accurate separation of the two effects.

8. Values of the Attenuation Coefficient

It has been known for a long time that in pure water the attenua-

tion of sound waves is due to viscous friction of the water molecules. Measure-

ments have confirmed the theory developed by G. G. Stokes a century ago

which predicts that the attenuation coefficient should vary as the square of

the frequency. In sea water an additional effect is observed at low frequencies.

This is due to the dissolved salts. When both effects are included, the attenua-

tion coefficient can be expressed by an equation of the following form,

A f?= + Cfz (316)a -+ Bf-

where f is in kc. The constants A, B, and C are functions of temperature

such that a decreases with increasing temperature. The U. S. Navy

Underwater Sound Laboratory, on the basis of extensive measurements in

the Atlantic Ocean (Project AMOS), gives the following values:

A = 0. 651 fT
B = f Tz  (317)

C = 0.0269/fT

77

.. . .. . .. .. . . . . .



where 13 6 2100 (

T-+4-5 9.6]'r 1 .23 x 106 +49 (3 i8)

T temperature, *F.

For T = 50°F these equations lead to

A = 60.6; B = 8"60; C 0. 000289 (319)

M. J. Sheehy and P. Halley found from measurements of

sound generated by an underwater atomic explosion in the Pacific Ocean that

the atteniation coefficient at very low frequencies from 16 to 250 cps can be

, expressed as~3/2
es a =0O. 033 f db/kyd (320)

According to Horton, when losses due to reflections at the

surface and bottom are included, the attenuation coefficient is considerabiy

larger at low frequencies. He gives the following formula for the overall

coefficient JI
a= 0. 20 f+ 0.00015 f2 (321) A

The following table summarizes the value of a computed from

the various formulas.

Attenuation Coefficient (db kyd)

f
(kc) AMOS Data, 50'F Eq. (320) Eq. (321)

0.1 .00007 .0010 .020

0.2 .00029 .0029 .040

0.5 .0018 ,0117 .100

1.0 .0073 .033 .200
2.0 .0291 .401

3.0 .0655 .601

5.0 .1815 1.004

10.0 .720 2.01
20.0 2.79 4.06

30.0 5.96 6.14

The largest discrepancies occur at vezy low frequencies where

the coefficient is very small. It is extremely difficult to measure a small

coefficient, since the sound must travel very large distances before it is
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attenuated appreciably, and in dcing so it undergoes repeated reflections

from the ocean boundaries. The 3/2 power law has been observed more

recently by other observers and appears to represent reasonably well

the attenuation of low frequency waves over long distances in the ocean.

The AMOS values, oi the other hand, represent the attenuation due only to

the sea water itself and do not take into account any other effects.

An important conclusion thatL can be drawn from the above

information is tha.t in order to achieve large sonar detection ranges it is

necessary to operate at low frequencies; otherwise the attenuation loss

becomes prohibitive.

9. FLuctuations in Sound Level

Sound levels in the sea are subject to extremely large rapid

fluctuations. It is thought that an important cause of these fluctuations is

the interference between waves arriving by different paths. One bit of evidence

for this conclusion is that when several frequencies are transmitted simul-

taneously ove- the same path, the fluctuations in the different waves occur at

different timne,3. Fluctuations have also been observed on longer time scales.

Variations have been observed in the average level over a period of several

minutes or even several hours. Values obtained for propagation loss are

based on the statistical average of a large number of measurements.

10. Propagation Anomalies

It is convenient to consider spherical spreading plus normal

attenuation as a nominal standard for computing pripagation loss. Any

deviations from this nominal standard which are observed in acoustic propa-

gation in the sea are often spoken of as propagation anomalies. These may be

of two types: spreading anomalies (i. e., other than inver';e square

spreading) and attenuation anomalies.
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TECHNOLOGY OF UNDERWATER SOtJND

(REVISED NOTES)
LI
tI

The Propagation of Underwater Sound (cont-d)

B. Refraction

I, The Ray Solution of the Wave Equation; Introduction

fntoo In the real ocean, where the speed of sound varies as a

function of the fipace coordinatee, solution of the basic differential

equation - the "wave equation" -

U (4ol),
+

generally involves insurmountable mathematical difficulties. There

are, however, several techniques for obtaining very useful approximate

solutions. One of the most valuable of such techniques is the method of

rays. The concept of rays follows logically from the characteristics of

wave s6iution. Families of rays are obtained as the solution of a simpler

differeitial equation, called the eikonal equation, which in special cases

is itself a solution of the wave equation and under rather broad conditions

is a very good approximation to a solution. The relation of ray acoustics

to wave acoustics is similar to the rela.,in of geometric optics to physical

optics.

2. Plane Waves and the Ray Concept

* a To introduce the subject we shall review the solution of the

wave equation which we obtained previously in the special case -where the

speed of sound c is constant. The solution is of the form

* This equation was designated previously as (112).
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where the expression in braces is ,the argument of the functio. F and

represents the phase of the wave, and o., 6, Y are constants satisfying

the relation

06 + I (126)

It is clear that the wave has a constant phase for all values of x, y, z, and

t satisfying the relation

tsI 11 (403)1

Focusing our attention on the wave at a fixed instant of time, we see that

the plane

is the locus of points of constant arrival time. Such a surface is called

a wave front. If we now watch the wave front move forward in time, we

see from (403) that

Ol ((A+PYq 3 = 141 0 (405)

The wave moves forward with speed c. The direction in which the point

(x, y, z) on the wave front moves is the direction of the gradient of s,

grad s L_+ 4AY
A

- A (406)
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This is a unit vector defining a line whose direction cosines are a, , y,

and which is therefore perpendicular to the plane defined by (404). The

direction of propagation is therefore normal to the wave front.

We thus see that as time increases, any given point on a wave

front moves with speed c along a line normal to the wave front. The line

along which the point moves is cailed a ray. For the plane wave discussed

above, the rays are parallel straight lines.

3. The Eikonal Equation

In the real ocean our basic assumption that c is a constant is

not true. The speed of sound varies with the space coordinates, chiefly

with the depth. When c is variable, equation (402) is no longer a solution

of the wave equation. Howevei, if the variations of c are small, then (402)
~should be a reasonable approximation to a solution. Let us assume this to

be true and investigate its properties under t] hypothesis that c is a

function of the space coordinates x, y, z.

The immediate consequence is that ct, 9, y are also variables

and, in fact, are no longer the direction cosines of the normal to the wave

front. The wave fronts are no longer planes but warped surfaces, and the

rays are no longer straight lines but curved lines in space.

For mathematical convenience let us express the frequency f

in terms of a constant reference value of the sound speed co and its
associated wavelength Xo (Xof = co), so that the phase of the yXave is

A wave front is a surface on which the entire second term in the above

expression has a constant value, and it propagates at speed c. Since c

has different values at different locations along the wave front, some

portions of the front move faster than others. A picture of a wave front at

two instants of time closa together might look as shown in the sketch.
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The perpendicular distance between the two surfaces is c At.

Since the space -ruction in the preceding expression for the

phase angle has lost its simple interpretat.ion as a plane, we may just as

well designate it as a general function W(x, y, z) so that the phase angle may

be written

Xo0E L " c o t " W(x" , 'y. z. (407)

! As any particular wave front moves along, the phase remains constant, so

that the value of the function W increases linearly with tirne, i. e. ,
f!

W = Co t + constant~l

or

dW~ o (408)

Now, any point on the wave front, as we have seen, moves along a ray path

at speed c, so that if s designates the distance traveled by this point, then

=s c (409)

and hence

- dW
dW dT cn

d s cs c I

T

,' 83

Sic h pc icin nte ed o h



Equations (408) and (40'.) say that while the wave front is moving

physically through space at speed c, the value of the functicn W(x, y, z)

increases at a constant rate c .

We must now determine the rate of change of 1V with respect

to s. Recalling -that the direction of a ray path is _normal to the suiface

W(x: y, z) = constant, we see that the rate of change we seek is given by
dW

the gradient of W, whose magnitude is - and whose direction is the"

direction of the ray path. The gradient is

W AM~ ± (411)

The magnitude A of any vector

~-A A AA=iA x  + k Az

i4s

A= Axa 
FAyZ+Az2

Therefore

+ (412)

and the direction cosines of the ray path ar:-e

~a

dW) (413)
d1 dS %IV

M Inserting (412) into (410) and squaring yields the desired differential

equation

C, /(414)
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Equation (414) is called tho cikonal e~uation. It is of funda-

mental importance because it is the basis upon which ray theory rests.

Families of rays are derived as solutions of this equation.

Before proceeding to apply these results to a practical

problem, we shall inquire into the question of the validity of the eikonal

equation.

4. Criterion for the Validity of the Eikonal Equation
It has been pointed out that the function (402) is not a solution

of the wave equation when c is variable, but is a good approximation if c

does not vary too rapidly. The same comments apply to the eikonal equation

which was derived from it. In this section we shall attempt to determine

what is meant by "not too rapidly. " To this end we shall assume a general

solution to the wave equation, of the form

=A ;A, , ) c.t - "CX '.Y7% 1 (415)

where the amplitude A is an undetermined function of the space coordinates.

When we take the necessary derivatives and substitute them into the wave

equation (401), we get both real and imaginary terms which must be equated

separately. The two resulting equations are

4ir -A ~'(416)I I.a 2w w + - + 3 ,-): o

Conparisori with (414) shows that if W satisfies the eikonal

equation, it will also be a solution of the wave equation only if the term on

the right-hand side of (416), i.e.,
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iv zero. This will be true in general only in the limit of very high

frequenci. -where X -- 0 The approximation will be good, however, ii

this term is small compared with ';/" (or with ( Y4 C 'pP-, Y!

which amounts to the same thing).

A rough idea of how small Xo must be can be obtained by some

order-of-magnitude computations. We saw earlier (412) that the sum of the

squares of the space derivatives of W is equal to the square of tne derivative

along the direction of ma:dmum variation. The same general concept may

be applied to the other groups of derivatives appearing in (416) and (417).

Since we are interested only in the order of magnitude, we can loosely treat

the sum of the three partial derivatives as a single derivative with respect

to some space coordinate, even though we do not know its direction. A

first derivative will be indicated by a prime symbol and a second derivative

with a doublr; prime. Becase of the roughnesG of the estimates we may

ignore the constants 41r z and 2. Under these conditions (336) and k337) may

be wriftcn as follows

.%-W (418)

W'AA

W + - - 0 (419)

The variation of c amounts to only a few percent, so that if we: select a

representative value for co the ratio co/c is of the order of unity. This

fact, iogather with the e;ikonal equation shows that

C
or

CO& c

From this we gee that our criterion is

X0 A (42k~1)
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This result needs to be expressed in more tangible terms.
} To do this, let us obtain A" by taking the derivative of (419). In all of

these operations it must be noted that algebraic signs have no sigrificance

since we do not know the signs of the various quantities. The o.aject is to

determine which Ierms are significant and which are not. Taking the

derivative, ignoring signs, and noting that W' ,- 1, we obtain

A ll W il + t W " A ' + A ' zw- + "' A' + (+.)Z (422)

AA

We now wish to express W' in terms of derivatives of c and to show that

the last two terms are negligible., The derivative of (420) is

cc c'
W1 c- c (423)

c c

and from (419)

A' W",- c' (424)
A c

Thus the last two terms of (422) are each of the order of magnitude of

(c/c)Z. Since the fractional rate of change in c, that is c/c, is normally

quite-small, we may neglect its square, so that (422) becomes

A"

Finally we take the derivative of W", neglecting the term involving (cc)Z

obtaining

W 11 I All (425)

The criterion (421) is thus roughly equivalent to
X2 c"'

0 < (426)

Now c' is the sound velocity gradient, which is commonly

denoted by the symbol g. c" is the rate of change of the gradient, and

Xoc" is the change in the gradient over the space of one wavelength, which

might logically be written as Ag. The condition (426) is then

X0Ag
<< 1 (427)

c
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From these results we see that the validity of, thei rayt *

solutioi is dependent upon the rate of change of the velocity gradient. So

long as the change in the gradient over a wavelength is small (compared

with c/Ao), ray diagrams will give a good description of the sound:field.

On the other hand, in regions of rapid change, the extreme example of

which is a boundary between different media, ray theory breaks down.

5. Application to Typical Ocean Conditions - Vertical Velocity

Gradient

In most ocean areas the speed of sound varies chiefly as a

function of the depth, the changes in the horizontal directions being relatively

small. We shall apply the e.lkonal equation to the ideal case where c depends

only upon the y coordinate. It will turn out as a consequence of this assump-

tion that sound rays are refracted only in a vertical plane - no horizontal

refraction. The problem therefore reduces effectively to two dimensions.

We shall designate the horizontal coordinate as x and the vertical coordinate

as y, and the z coordinate will drop out. Our basic assumption is that c is

a function only of y.

We shall'employ the following conventions and notation

x = horizontal distance from sound source,

y = vertical distance measured downward from the ocean

surface,

s distance measured from source along ray path,

t = travel time from source along ray path,

0'= angle of ray path relative to the horizontal, measured

positive downward,*

p d-; velocity gradient, a function of y only.

*The symbol ' 'is used in this section to denote the angle measured

positive downward. We shall reserve the plain symbol 8 to denote the

angle measured positive upward.
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The accompanying sketch shows a wave front W(x, y)
constant, and a ray AB which inte2sects the wave front at the point P,

where it is perpendicular to the wave front. The angle of the ray with the

horizontal at this point is e'.

IX

/.,..... w ,, le -Fo,,- W Nx j ) = c ans-f.

In the analysis which follows we shall seek to determine the

characteristics of a ray path by deriving relations among the variables

x, y, s, t, and 0'. We shall begin with the function W(x, y) defined by the

eikonal equation and shall derive a set of differential equations whose

solutions yield the desired relationships. Analytical solutions can be
obtained if certain simplifying assumptions are made. The differential

equations will be expressed in terms of full (rather than partial) derivatives,

it being understood that all differentials dx, dy, ds, etc., refer to incre-

ments taken along the ray path.

The sketch below shows an enlarged view of the portion of the

preceding diag,:am in the vicinity of the point P. Let ds be
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an elemert of length along the ray and let dx and dy be its corimponents

along the, and y axes. Then
dx = ds cos 0' (428)

dy = ds sin 0' (429)

The xat: of change of 0' along the ray may be expressed in terms of

partial derivatives with respect to x and y.

ellQt " e

0 = ' -Y (430)

We now return to the W functiun. Since -the problem has been

6 reduced to two dimensions, the wave front W(x, y) = constant is a curved

line in the xy-plane and the gradient of W is a vector (in the xy-piane)
•I

which points in the direction of the ray. and whose magnitude, according'

to (410), is

6 dW c0

ds c

The direction cosines of the ray, i. e., cosines of the angles with the x and

y axes, are cos 0' and sin 0' respectively, and these must be equal to the

respective direction cosines of the gradient, as given by (413). Therefore,

relative to the x axis we have
aw aw

or
... ez~~'c (431)

and relative to the y axis

- (432)
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If we take the partial derivative of (431) with respect to y and the partial

derivative of (432) with respect to x, we obtain in each case the second

partial of W with respect to x and y, and resulting expressions will be

equal. Recalling that c is a function of y only, we obtain

311W Cw_ e°sj le- C. Co r- Ca C 19 a_ -

or , /

Substitution of (430) gives

and, from (429)

dc(434)

Equation (434) integrates directly to

log c log cos 0' + constant

If we write the constant as log cv, we obtain

c = ros 0 (435)

Equation (435), which says that the cosine of the ray inclination angle is

proportional to the speed of sound, is of fundamental importance in ray

acoustics. It is a generalized form of Snell's Lav, which is familiar to

students of geometric optics. The more familiar form of Snell's Law

is encountered when a wave travels across a discrete boundary between two

homogeneous media having distinctly different speeds of propagation, and

experiences a sharp change in direction. Equation (435) applies not only to

this type of discrete refraction but also to the continuous refraction which

results when the speed of propagation varies in a continuous manner within

* the medium. The derivative dc/dy is the (vertical) velocity gradient g.
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Inserting this symbol in (433) and applying Snell's Law, we obtain a

relation between.ds and dO'.

ds= -- dO' (436)
g

Equations for dx and dy in terms of dO' are obtained by applying (428) and

(4Z9).

cv
-X cos 0' de'(47

dy= - sin 0' del (438)Lg

Finally, the increment in travel time is

ds dsdt = - =
C CV Cos 0,

or dt= dO' (439)
g cos 8'

Equations k436), (437), (438), and (439) are particularly

useful in the special case where the gradient is constant, since they may be

integrated directly to give a set of parametric equations expressing :, y, s,

and t as functions of the angle 0'.

6. Snell's Law

Snell's Law may be derived in it, more famniliar form by con-

sidering the passage of a wave across a boundary separating two homogeneous

media, such as water and air, in which the speed of propagation has distinctly

different values. The effect here is to cause a sudden change in the direction

of propagation, as can be seen in the case of visible light when a straw is

placed at an oblique angle in a glass of water. This is the basic meaning of

the word refraction, although the meaning hias been extended to include the

continuous curving of rays wiciph occurs when the speed.of propagation

changes gradually within a medium.

In the aketch below, the line 00' indicatesthe boundary between

two homogeneous media. The speed of propagation is c1 in the first medium
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and c. in the second. A plane wave is traveling downward in the first

medium at an angle 81 with the boundary. The wave front at the instant

when the ray AB reaches the boundary is shown by the line BB'I which is

A
AA

?1ed~lAui

C

perpendicular to AB. As the wave crosses the boundary the speed of prcpa-

gation is suddenly changed from c I to cZ . Therefore, while the ray A'B'C'D' is
traversing the distancc BIC', the ray ABCD traverses a different distance

BC. When the ray A'B'C'D' reaches the point GI, the wave front will lie

along the line CC'. To locate the point C, we swing an arc oi radius BC

about the point B, and then draw a tangent line from C' to this arc. ThisF

procedure will determine tae direction 0 in which the ray BCD must travel

in the second medium in order to be perpendicula to the wave front CC'.

The travel time friom B to C is the same as from B' to C',
and is equal to the distance divided by the speed. Hence

BC B'C'
I - Cl

But

BC = BC' cos 02

and

B'C' = BC' cosO,

T
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Therefore

BC' cos 0' _ B cbs 01

~' or

con o(440)
C2  Cj

Equation (440) is the conventional form of Sniel's Law. it is

clear that if there were other media in the form of parallel layers, whose

boundaries were parallel to 00', the above relation would hold for a ray

traveling through all of them, so that,

S = = constant cv (441)

Cos C . Cos 02 cOs 03

Supposd now that in the ocean the speed of sound varies

continuously with th6 depth. We could approximate the true situation by

dividing the ocean into a nunber of layers in each oi which the speed Gf

sound is assumed' to be constant and to have a value corresponding to the

center of the layer. Equation (441)-would then apply, We may now go

through a limiting process of letting the number of layers go to infinity and .

the thickness of each layer go to zero, and thereby arrive at a continuous

variation of V with c, given by

C Cv CosO (435)

This, of course, is the same result which we obtained from the eikonal

equation. *

*The prime symbol on 9 has been omitted here because 'we are not concerned

aboat whether the angle is positive upward or positive downward. As a

matter of fact the cosine is the same whether the angle is positive or negative.
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Two facts must be borne in .fnind in applying Snell's Law.

First, equation (435) is valid unly in physizal situations where the speed of

sound is a one-dir.nensional space fiunction. The angle 0 is measured

relative to the direction along which c is co.nstant. In the ocean, c mustrvary orly with depth and 0 is measured from the horizontal.

Second, the constant cv applies only to a particular ray.

When, for example, we wish to consider a family of rays which spread out

from a sound source, different values of cv. depend-ng upon the angle at
which they leave the source. The physical significance of c may be seen

by letting 0 = 0. From this it is seen that cv is the speed of propagation at

the depth at which the ray is horizoutal. As we shall see, the existence of a

velocity gradient causes rays to curve either upward or downward. An

upward-curving ray, for example, will descend to a maximum depth, at

which it is horizontal, and will then curve back upward toward the surface.

The point at which a ray reaches a maximum or minimum depth is called

a vertex, and the speed of sound, Cv, at this depth is called the vertex

velocity. It is cr!er that rays which leave a source at different angles

(rellve to the horizontal) will vertex at different depths and will therefore

have different values of cv.

SnelV 's Law applies not only to the refraction of sound rays in a

stratified ocean, but also to ref.ection from the top and bottom (assuming,

of course, that the reflection is specular). An interesting problerr arises

in the case of a sloping bottom, which violates the basi. requirement that c

be independent of the horizontal coordinate. In this case the reflected ray
acquires a new value of cv which depends upon the tilt angle of the bottor-i.

Refraction at Boundary; Critical Angle

To investigate further the properties of refraction at the
interface between two different media, et us assume that the speed of

propagation in the second medium is larger than in the first, that is,

c? > c1 , as implied by the preceding diagram. From (440) we see that
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cos 0 > cos :1. Since-the cosine decreaseo froni .1 te 0 ask the angle

increases.from G-to 90 tegrees, it' is. evideit that, { 61. Thu0, when

a ray passes from a medium of low sound speed to a medium of hgh sound

speed, it is bent toward the plane of the interface. Conversely, -vhen a ray

travels into a medium oi lower sounm speed, it i2 bent away fromrthe plane

o_ the interface. Since sound travels faster in water i.an in air, sound

rays traveling from air into water will- be bent toward the horizontal,

and sound rays traveling from water into air will be 1et . away from the

horizontal. It is interesting to note -that the reverse is true for rays of

Rewriting Snell's Law in the -formI cz
cos 0 =  cos 61

ci

we see that whenever cos 0, > c 1 /cz, cos 0 > 1. Since the cosine of a

real angle can never exceed one, the angle e2 ceases to exist in this case. -

The angle 01 = 0c in the slower medium, where

co6 cc

is called the critical angle. The corresponding angle 02 in the- faster

medium is given by
~Cos OZ i!

or

0= 0

The physical interpretation of these results is as follows.

When a ray in the slower medium (e. g., air) is incident upon the boundary

at an angle 01 > Oc with the horizontal, the ray enters t1-e faster medium

(e. g., water) and is bent toward the horizontal. At the critical angle 0c

the refracted ray travels along tie interface (62 = 0). When the incident ray

is more nez.rly horizontal thah the critical lay, tha:. is, when 01 < 6 c , the

ray does not enter the faster medium at all, but is totally reflected.II-I



When a ray is incident from the faster inediun, there is

no critical angle. Refraction occurs for all angles of incidence, and tiae

angle between the refracted ray and the horizontal will never be less than

ec.

As an illus-ration, let us select typical values -or air and

* water.

cair = 1100 ft/sec

cwater = 5000 ft/sec

Snells Law states

cos Gair 0. 22 cos Owater (443)

The critical angle (in air) is

0c = COS'l 0. 22 = 77. 3 degrees (444)

Thus, if a sound source is located in the air above an ideally smooth water

surface, as illustrated in the following sketch, only those rays which lie

within a narrow cone of 12.7 degrees from the vertical will penetrate into

the water. All rays outside this cone are totally reflected back into the air.

/1/

/ /~

/Air
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Virtual Sources (Images)

It will be observed that the rays 9hown in the water in the

preceding sketch appear to be spreading out frcm some point in the air

which is closer to the water than the real source. This is the same effect

that one finds in optics - the formation of an image or virtual source.

Actually, if the rays in the water are projected back beyond the interface,

they do not all converge to exactly the same point, but for every small

bundle of rays such as would be intercepted by a hydrophone there is an

image source somewhere in the air above.

The simplest case to consider is the case of vertical incidence.

If a hydrophone is located in the Aater directly underneath a source in air,

where is the image located ? It is obvious that tha image taust be located

somewhere on a vertical line through the source, because a vertical ray

(at normal incidence) does not experience a change in direction. To

determine where the image is located on this line it is not enough to con-

sider a single ray. We must examine a bundle, or narrow cone, of rays

and find the point from which they appear to be spreading after they enter the

water. For this purpose the bundle can be represented by two rays separated

by an infinitesimally small augle. We shall select the vertical ray as one

of the two and shall select for the other a neighboring ray which leaves the

source at a small angle Aea with the vertical.

The geometry of the situation is shown in the following sketch.

The true source is located at the point 0 at a height H above the water. The

vertical ray is OPQ. The neighboring ray is OP t , which upon entering the

water is bent away from the vertical and becomes P'Q', making an angle

AO,, with the vertical. (The angles A0 a and AOw have been grossly

exaggerated in the sketch.) When P'Q' is extended back into the air, it

intersects the vertical ray at the point 0' at a height H' above the water.

0' is the image. Knowing H, AOa, and the sound speeds ca and cw in air

and water, we must now determine H'.
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The angles employed in our formulation of Snell's Law are

measured relative to the horizontal. Therefore

0a- AOa a
2

Also, since AOa and AOw are exceedingly small,

cos ea=sin A ax AOa

cos Ow = sin AOw AOw

Snell's Law takes the form

AOa

thefiur i issen haAOw CW

(In the limit as Aea and A0 w go to zero, this equation becomes exact.) From
the figure it is seen that

PP' =H tan AOa H' tan Aew

or, since the tangent of a small angle is very nearly equal to the angle

itself (in radians),
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H' A e a

H - H
Aew

or H caor H (445),
CryV

For the case of air and water Ca/Cw 0. 2Z and

SH'= 0.22 H (445a)

At vertical incidence the height of the virtual source above the water is

about 1/5 the height of the true source.

We shall not analyze the general case of oblique incidence.

However, the results of such an analysis show that as the angle of the

incident ray (relative to the horizontal) is decreased from 90 degrees to

the critical angle, the image point traces out a smooth curve which begins

with infinite slope along the vertical ray and, when the critical angle is

reached, ends with zero slope at a point on the air-water interface at a

horizontal distance

Ca-H
cw (446)

from the vertical ray. For air and water the denominator in (446) is almost

equal to one, so that at the critical angle the image is displaced laterally

at the surface by a distance approximately equal to the height above the sur -

face in the case of vertical incidence.

In addition to knowing the direction in which rays are refracted

at a boundary we are also interested in knowing how much of the incident

energy is transmitted into the adjacent medium and how much is reflected.

Unfortunately ray theory does not give us answers to this question. Further

discussion of this subject will be found in the section on reflection.
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7. The Speed of Sound in the Ocean; Velocity Gradients

(Note: There is much confusion about the terms speed and

velocity as applied to wave propagation. When one is concerned about not

only the speed but also the direction in which a wave is moving through the

water, the word "velocity" is appropriate. However, when one is con-

cerned only about the properties of the medium, as we are at present, the

direction of propagation is of no concern. If c has a value oi, say,

4950 ft/sec at a certain place in the ocean, then a wave at this place will

propagate at 4950 ft/sec regardless of the direction. The proper word to

describe this property of the medium is therefore "speed. " although the

two terms are used indiscriminately in the literature. Gradients of c

are almost universally called velocity gradients, and in spite of the

inconsistency, we shall use this term also.)

Extensive measurements have been made o. the speed of

sound in sea water at various temperatures, pressures, and salinities,

and highly accurate empirical formulas have been derived. The most

accurate results have been obtained by Wayne Wilson of the Naval Ordnance

Laboratory. However, since Wilson's formulas are exceedingly complicated,

we shall use an earlier formula which is far simpler and sufficiently

accurate for the purpose of these notes.

c 44Z2 + 0. 018Zy + 11.25T - 0.045TZ + 4.3 (sal 34) (447)

where

c = sound speed in ft/sec

T = temperature in OF

y = depth in feet

sal = salinity in parts per thousand

Except in areas where mixing of fresh water and salt water

occurs, the salinity term in (447) is relatively unimportant, and we shall

neglect it in these notes. We shall also make the assumption that

variations in temperature in the horizontal direction are negligible, o
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that T is assumed to be a function of y only. Under these assumptions

the speed of sound is also a function, only of the depth. The gradient of

c therefore-has only a vertical component. On the basis of (447),

neglecting the salinity t.erm, the velocity gradient is
dTg 0,o., 0182 + (,11. Z5 0., 09T) Ty(448)

where :(
dc

d= temperature gradient in *F/ftdy ,

When c or T increases with increasing depth, the corresponding gradient

is p2iye; if it decreases with depth, the gradient is n&ati e.

The first term in (448) is the pressure term. The pressure

increases linearly with depth, and therefore its contribution to the velocity

gradient is constant. Thits means that where the temperature and salinity

are constant there is alw; ys a positive -velocity gradient of 0. 0182 sec"

The second term is the temperature term. It is seen that

the temperature contribution is proportional to the temperature gradient

dT/dy. Because of the parabolic relationship betwee2 sound speed and

temperature, the coefficient of dT/dy is itself a function of temperature.

It is seen that at high temperatu.tes the temperature gradient has less

effect on g than at low temperatures. It is also seen that where there is a

constant temperature gradient, the temperature varies linearly with depth

and hence, according to (448) the velocity gradient cannot be constant.

Actually, k/.owever, such non-linearities are usually quite small - smaller

= than the errors in measurements - and it is generally assumed that a

constant temperature gradient produces a constant velocity gradient.

Tempe:,ature gradients in te ocean, especially in the near surface region

(down to 1000 to 2000 feet), exert a strong influence upon sound propagation

a4d thus have a powerful effect upon the performance of underwater 'acoustic

K. systems.

102

~,



?
l- isothermal water the velocity gradient is positive,

due to che pressure effect. A sufficiently negative temperature gradient

will cause the velocity gradient to become negative. The limiting value

of the temperature gradient required to balance the pressure effect and

produce iso-velocity water (g =0) is

dT _ 0.0182 0
dy 11.25 - 0.09T F/ft

Its numerical value at a temperature of 50 OF is

4 dT 0.0182d = - 0.018 - 0. 0027 °F/ft (449)
dy 6.75

We see that an extremely small change in temperature - less than 0. 30 F

in 100 feet - is sufficient to change the velocity gradient from positive to

negative.

Measurements of the Speed of Sound

Oceanographic measurements of the speed of sound have in

the past been made indirectly-by measuring the temperature, pressure,

and salinity, and computing the sound speed from empirical formulas,

such as (447). The classical techniques used by oceanographers for making

these measurements are somewhat cuombersome, and for this rason measure-

ments are usually made only at a limited number of depths. The standard

depth intervals are frequently too large to give an adequate picture of the

velocity structure in the ,,ariable near-surface region.

Shortly before World War U a continuous recording tempera-

ture instrument known as the bathythermograph was developed at the Wood's

Hole Oceanographic institution for use in the near-surface region down to

several hundred feet. The record of temperature vs. depth is inscribed

on a sonoked glass elide held cn a moving carrier in a cylindrical body.

As the instrument is lowered, the graph is traced by a stylus moved along

the arc of a. circle by a radial arm. The angle of the arm is controlled by

the temperature, while the position of pivot is controlled by the pressure

by rteans of a Bourdon tube.

i, 103



The bathythermograph gives a quick and fairly precise

record of the temperature profile in the near-surface region and ha6

become standard. equipment on Ships engaged in undersea warfare.

As a result of the development of the sound velocimeter in

recent years, sound speeds may now be measured directly. This instru-

ment measures the time required for a pulse to ti. avel a fixed distance.

Direct measurement of the speed of sound not only saves time and labor,

but also makes it possible to determine the effects of bubbles and foreign

* particles.

Velocity Structure of the Oceans

The variability of the speed of sound in the ocean is due

chiefly to temperature variations. Conditions are most variable in the

first thousand feet or so, as a result of surface effects, such as the sun,

wind, waves, surface currents, etc. In most ocean areas there exists a

* surface layer, called the isothermal layer, in which the temperature is

substantially constant. The isothermal layer arises from a mixing action

at the surface and its thickness varies with the season of the year. During

the fall and winter when the surface is cooled, the water at the top becomes

more dense than the vwater underneath. This is an unstable condition, and

the mixing which results contributes to the formationof the isothermal

layer. Other factors such as the wind also contribute. In the North Atlantic

the average thickness of the layer varies from about 500 feet in winter to

between 0 and 100 feet in summer. The isothermal layer is a region of

positive velocity gradient.

An interesting variatiGn frequently occurs during the daytime.

Heating of the surface due to the sun produces a shallow negative ,radient

layer late in the day, which has been observed to influence the performance

of sonars with shallow transducers. It disappears during the night. This

is known as the afternoon effect.
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Below the isothermal layer there is typically a layer in

which the temperature drops rapidly. This is called the thermocline.

It is a region of large negative veiocity gradient.

Occasionally there exists below the thermocline a layer in

which the temperature increases with depth before dropping again. The

combination of a positive gradient below a negative gradient produces what

is known as a sound channel. In this case it is called a depressed sound

channel. Abnormally long detection ranges are obtained when both the

sonar and the target are in a channel. By virtue of surface reflections

the surface isothermal layer acts as a very efficient sound channel. It is

frequently called a surface duct.

At greater depths the temperature continues to drop, but at a

diminishing rate, and gradually approaches an isothermal condition toward

the bottom. At a depth of several thousand feet (typically 3000 to 4000 feet

in the mid-latitudes) there is a point where the thermal effect balances the

pressure effect, producing a zero velocity gradient. • Here the speed of

sound is a minimum; above it the velocity gradient is negative and the

sound speed increases (with decreasing depth) due to temperature; below it

the velocity gradient is positive and the sound speed increases (with increas-

ing depth) due to pressure. The deep ocean thus behaves as a sound channel -

called the deep sound channel or SOFAR channel. The depth of minimum

sound speed is the axis of the deep sound channel.

At depths b-clow about 5000 feet most deep ocean areas

throughout the world have substantially the same velocity structure (c vs.

depth), and there is virtually no change with the season of the year. The

accompanying diagram shows several typical velocity profiles for the North

Atlantic Ocean. To locate the deep sound channel, draw a vertical line from

the point of maximum sound speed near the surface to the point where this line

intersects the lower portion of the curve. The interval of depths between

these two points is the channel.
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The strongest thermoclines generally occur where the

surface temperature is the highest - in the lower latitudes and/or during

the summer. In polar regions the surface temperature is usually so low

that the water is nearly isothermal from top to bottom. In such locations

a positive velocity gradient exists at all depths and the entire ocean acts

as a c.!-face duct. The presence of an ice cover in the Arctic region

produces a peculiar effect. Low frequency sound propagates very well, bit

high frequency sound suffers high attenuation due to the roughness of the ice.
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TECHNOLOGY OF UNDERWATER SOUND
REVISED NOTES

The Propagation of Underwater Sound

B. Refraction (continued)

8. Ray Paths in a Constant-Gradient Medium

A simple analytic solution of the differential equations can be

obtained in the special case where the velocity gradient is constant. in

deriving the solution we shall reverse sign of the ray angle and shall use

the symbol 0.

0=- 0'
The angle 0 is measured positive upward, although the depth coordinate y
is still measured positive downward. With this change the four differential

equations (436) tci (439) relating x, y, s, and t to 0 take the form
! c v

dx = --cos 0 dO (450a)' g

c.
dy=--- sin 8d9 (450b)

g

cv
ds =- dO k45Oc)g

dt = dO (450d)g Cos 8

Note also that the slope of the ray is

dy -tan 0 (451)

If g is constant, the solutions arec
v=-- sin 0 + const. (45 1a)

* cv
y1 cos 0 + const. (451b)
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- 6 + conct. (6 in radians) (451c)

t loge 1sin + const. (451d)t - - g e I - sin 0

For the moment, for illustrative purposes, let us translate the

origin of x and y tc such a point that the constants oi 1ntegr: ~tion in (4514)iaod

(0lb) are zero. We shall call the translated variables x' and y'.

Then (451a) and (451b) become

cv x' =--s 0 452a)

y cos 0 (452b)g9
cv

It is quite clear that the ray is an" arc of a circle of radius -. Since g mayg9
be either positive or negative, the radius may likewise be either positive or

negative, Let us consider for the moment an isothermal medium, in which

g has a positive value 0. 0182 sec. Reasonable values of cv would be in the

neighborhood of 4800 to 5000 ft/sec. To make the arithmetic simple, suppose

cv 4914 ft/soc. Then

v 40/14 ft/sec
g = 0142 tsec 270, 000 ft.9 .0182 sec

90,000 yd = 90 kyd
f

= 45 n. mi.

The radius of a ray in an isothermal medium has the tremendous value of

about 90 kyd. When the ray is horizontal, that is, when 0 = 0, y' has its

maximum value of CV/g. The ray arc is thus part of a huge circle whose

p cefiter is about 45 miles up in the sky, as illustrated in the sketch below.
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The origin of the coordinates x1 and y' is at 0, the center of the circle. The

arc P ST is a portion of the ray. It curves upward.
cvCv

Conversely, if g, and hence - , is negative, then y' is also

negative. In this case the center of the circle is below the bottom of the

ocean and the ray curves downward.

Let us now assume that the point S is a sound source and that

the speed of sound at this depth is co . For convenience assume also that

the velocity gradient is positive. The angle of inclination of a ray at the

source vill be called the initial angle 0o. If we consider a family of rays
leaving the source in any one vertical plane, we see that each individual
member of the family is identified by its particular value of 0o. Therefore

to investigate the characteristics of the ray family we shall express (452a)

and (452b) in terms of 00 by applying Snell's Law which, at the source,

takes the form

iQ9

-



. o o (453)

The coordinates of any point on a ray are then

co
x' = sin 0 (454a)

y, I= Co .Cos (454b), g C o s e o

where x' and y' are measured from the center of curvature 0 of the circular
I4

ray arc ST. The cooroinates (x , y) of the source S are the values obta~inee

when 0=0 o , i.e.,
co

X' - tan 0 0  (455a)

= o  (455b)

o-Yo =  0

" 0

/ Cos so

\\ T

If we laow focuti our attention on the source we see that for each different

initial angle there is a different ray arc whose center is located in accordan-cf

with (455a) and (455b). Note, however, t hat the y' coordinate is independent

of 00. This means that the centerE of all the circles lie on a horizontal line

110



at a distance co/g above the source. This line is called the line of centers.
When the velocity gradient is negative, the line of centers is below the

source.

0 0 Line of Cen+tr S

, I ,S I I I' ," IS I , / / I
I I !/ 11 I

I I J / // I I ! IIilI !///fI

I I 
I

, , // / II II I, / / /

Air//

The radiu curv +-_ % ots o^, Trruninun or the ray wh--'ae
the source horizontally, and increases as the rays become steeper. The
radius of curvature of a vertical ray is infinite, that is, a vertical ray is a

straight line.

We shall now express the ray equations in terns of the original
coordinates x and y, where, it will be recalled, x is the horizontal coordinate
measiired from the source and y is the vertical coordinate measured down-
ward from *he surface of the ocean. Let the source be placed at a depth yo
where the sound speed has the value co. The constants in (451a) to (451d)
are evaluated from the following initial co'nditions:

xO0
Y Yo
30

t 0

kt " /,



The resulting equations for x, y, s, ,and t are

Co
x o (sin 9 - sin eo) (45 6 a)g Cos 00

Y-Yo = (cos 0 - cos 0o) (456b)
jo g Cos 00

co
= ( -O0) (45 6 c)

g cos 0o

I + sin 0O + sin 00
t- = loge - log e  s (456d)

It is interesting to observe that the y-equation (456b) is in

reality only an alternate way of stating Snell's Law. Let c denote the speed

of sound at the depth y. Then, because the gradient is constant, it follows

that

c -c o  g(y -Yo) (457)

Substitution of (457) into (456b) yields
_ c - c o _ C o ( o o o

(CsCoo 0
Y " Yo g g Cos 0o

which reduces to
c c

- 00=(457a)Cos 0 cos Oo

Practical computations of ray paths in a constant-gradient

medium are most conveniently made by treating y as the independent variable

and proceeding as follows:

(I) Select a value for y.

(Z) Solve (456b), or the combination of (457) and ,457a), lor cos e.

(3) Determine 0 and sin 0 from cos e.
A(4) Compute x, s, and t from (45 6 a), (15 6 c) and (456d).

It will be noted that in determining e and sin 6 from cos 0 there

is an ambiguity in algebraic sign, since both positive and negative values of

0 lead to the same value of cos 0. The physica! significance of this ambiguity
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is evident from the fact that the horizontal line y = constant intersects the ray

circle at two points. As indicated in the sketch below, there are two ranges,

x I and x 2 corresponding to the same depth y. One of these ranges occurs

_______i

[ before the vertex of the ray and the other beyond. If one is computing a ray

path by manual computation, it is easy to see from a rough sketch which range

to use. However, all modern ray tracing is done on digital computers which

are not smart enough to make decisions by looking at rough sketches. In

writing a computer program, one establishes a set of simple ground rules by

which the machine is enabled to make all its decisions.

One might logically inquire why we did not start with x instead

of y. In this case we would obtain sin 6 directly and avoid the ambiguity.

Such a procedure would be excellent if the medium had no boundaries. hxi

practice, however, we are always working in layers of finite thickness, and

the boundaries between layers occur at specified values of y.

Small Angle Approximation

Occasions sometimes arise where a quick estimate of the

horizontal range from a source to the vertex of a ray is needed. In most

practical applicatioi.s of conventional sonars the rav angle-; are quite small,

and in such cases an extremely aseful formula may be derived on the basis
of small angle approximations. F~r this purpose we shall place the origin of

.c at the vertex, and shall denote the depth of the vertex by ym The

coordinates of any other point (x, y) on the ray are obtained by inserting

00 =0

Yo =Ym
s in 0 0

Cos 0 1 - OZ

into (45 6 a) and (456b). The result is

113



c 0X 0 
[

g

and
C0 ozY Ym 2g

Elimination of 0 between these two equations yields

Y Ym 2c x k4 5 8 )

or x 0 (Ym- Y) (458a)

It is seen that the arc of the circle in the vicinity of the vertex has been

approximated by a parabola. This approximation is quite good when the ray

angle does not exceed about 10 degrees.

9. Multiple Constant-Gradient Layers; Boundary Effects

Having learned that rays in a constant-gradient layer are arcs of

circles and that they curve upward where the gradient is positive and downwaLi

where it is negative, we are now in a position to examine the phenomena

associated with the existence of multiple layers arid of the oce'an boundaries.

Consider first the simple case of two constant-gradient layers

having different gradients. Suppose that the upper layer, which we shall

call the first layer, has a positive gradient, while the lower or second layer

has a negative gradient. As indicated in the sketch below, the boundary

between the two layers is a point of maximum sound speed. Let the source S

be located in the first layer. Any ray such as SA, which leaves the source

with a positive (upward) initial angle will continue upward. A ray such as SB,
1
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whose initial angle is slightly negative, will descend to a vertex in the

first layer and then rise again due to the upward curvature. A ray such

as SD, having a strongly negative initial angle, will cross the layer

boundary with a finite slope at E and penetrate into the second layer where

it will curve downward. Somewhere between SB and SD there is a special

ray whose vertex occurs at a point of tangency T on the boundary. This

ray is clearly the limiting case between the type SB which diverges up-

ward from the boundary and the type SD which diverges downward. The

ray ST is called a limiting ray. Beyond the vertex T it splits into two

branches, the near branch TO and the far branch TO'. Between TG and

TC' is a region into which (according to ray theory) no sound enters. Thi -

region is called a shadow zone. Shadow zones occur in the ,icinity of a

regioa of maximum sound speed because on either side of the maximum

the rays curve away. A point of maximum sound speed tends to "repel"

the rays.

It should be noted that shadow zones do not exist in the strict

sense in the real ocean, There are two reasons. In the first place, sharp,

discontinuous changes in velocity gradients do not occur in nature. There

is always a region, however small, of gradual transition, and this results

in a small umber of rays entering the idealized shadow zone. Secondly,

we have leaiied that ray theory breaks down Nherever the velocity gradient
changes rapidly with depth. Therefore, even if the gradient changed

discontinuously between the two layers, a certain amount of acoustic energy

would leak by diffraction into Che shadow zone. In spite of these considera-

tions, however, very pronounced shadow zones, in which the sound

intensity is exceedingly small, are actually observed to exist in the ocean.

The effects described above result in a continuous tramnsition into the shadow

zone rather than a mathematically abrupt one, but inside the zone the

spreading lose is so high that detections are all but impossible.
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A similar pattern exists when the source is located in the V
lower layer, except, of course, that in this case the limiting ray leaves

the source an upward angle. L4

The two-layer situation described above is typical of the

condition, which exist over large areas of the ucean in the near surface

region. .The upper layer corresponds to the surface isothermal layer

and the lower layer corresponds to the thermocline. However, in. this

case one ew element has been added, namely, the surface boundary,

which scatters sound energy back into the water. If we assume that surface

acts as a smooth reflector- a fairly good assumption in low sea states-

we see from the following sketch that a certain amount of reflected energy

penetrates into the ahadow zone.

C hca Y a C" ' " ,'~ vh c o ,. p It.I 4 e ) 'i

Li Y+ivY R )

In the limiting case where the surface layer ceases to exist and

the negative-gradient layer extends to the surface, the limiting ray

generates the maximum range which can be qchieved, since surface-

refleced rays will always return at smaller ranges, as indicated in the

sketch below
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A few general conclusions regarding placement of sonar

transducers may be drawn from the preceding remarks. First, if a

surface duct exists and both the sonar transducer and the target are

located in the duct, abnormally long ranges can be achieved through a

combination of surface reflections and upward refraction. Second, if the

submarine is below the layer and the transducer is in the layer, or vice

versa, poor detection ranges are to be expected. Third, the transducer

should never be placed at or slightly below the interface between the two

layers, Fourth, if the submarine is below the surface layer, the trans-

ducer should be lowered to the maximum practical depth to achieve the

maximum detection range.

Let us now consider the case of two layers such that the

upper layer has a negative gradient and the lower layer has a positive

gradient, as ilustrated by the following diagram. The upper layer is

shown as extencing from A to B on thc velocity profile and the lower laye.

from B to D. The sound speed is a minimum at depth B. It is a maximur

at A and D, and is assumed to decrease again beyond these two points.

Suppose the sound source is located at S. All rays leaving S will curve

downward. The Ray SPQR ... , which leaves S horizontally, crosses the
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lajer boundary at P and is refracted upward in the lower layer, vertexing

at Q and returning to boundary at R. The upper vertex T occurs at the

same depth as the scurce. it is thus seen that the ray oscillates up and

down as it propagates forward and remains within the boundaries of the two

layers. This is what is meant by a sound channel.

Consider now the ray SP' Q' R' ... which is a limiting ray at

branch, with which we are presently concerned, crosses the interface at

Q and vertexes in the lower layer at the point RP at depth C. Since the ray

is horizontal both at depth C and at depth A, it is evident from Snell's Law

that the speed of sound is the same at both depths. The depth. C can be

located on the velocity profile by dropping a vertical line from the point A

to the ii4 tersection with the segmeat BD. Thus the limiting ray from S is

confined to a chai. el extending from A to C, and this is true for a source

located at, any depth within the channel.

Any ray which leaves the source at a steeper angle than

SP'Q'R. .. will cross the upper boundary and leave the channel. Also an,,

ray, such as SP"Q"R" .... which leaves the source at a correspondingly

steep downward angle will vertex at a depth Q" below C and upon returning
gi
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upward will leave the channel at T". tJf the ray is sufficiently steep it may

even cross the lower boundary and leave the channel there.)

In summary, a region in which the sound speed passes through

a minimum gives rise to a sound channel. The depth of the minimum is the

axis of the channel. It tends to "attract" rays. To deter~ninz the thickness

of the channel, one examines the adjacent maxima of the sound speed

profile above and below the minimum. The width of the channel is governeri

by the shallower of the two maxima, i. e., the one which has the smaller

value of cmax. The channel extends from the depth of this maximum to the

depth on the other side of the charmel axis where the sound speed has this

same value.

As indicated previously, a positive gradient layer at the surfacE

behaves as a sound chamel, due to reflections from the surface. This is

easy to set, if the reflected rays are "re-reflected, " so that they travel

through an imaginary layer above the surface which is a mirror image of tht

actual layer below the surface.

I?

I I ,- "" x
Air

A similar situation can occur in shallow water when a negative

gradient exists all the way to the bottom, the combination of downward

refraction and bottom reflections giving rise to a sound channel.

119



in general, however, bottom losses are far larger than surface losses,

and the propagation characteristics of such a channel are usually ierior

to those of a surface channel.

C, _ _ _ _ _ _ _ _ _ _ __'_
"

_ _ _ _ _

\ \ /
\ \ /

It will be useful to implem ent a portion of the preceding

qualitative discussion by deriving the appropriate mathematical formulas.
For this purpose we shall itssume that the velocity profile has been specified

in terms of the sound speed at each of the layer boundaries. The value at

the surface (y = 0) is cs. The value at the boundary y 1 2 between the first

and second layers is c1_; the value at Y23 is c23 ; the value at Y34 is c34 ,

and so on. The sound speed at any intermediate depth car bg computed

from the appropriate linear formula. For example,
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the sound speed at any depth y in the second layer is obtained from

c - CIZ = g (Y-YI 2 ) (459)

where
C23 c 12.

g Y2lz (460)
Y23 - Y1 2

We shall suppose that the velocity profile has the characteristics shown in

the preceding figure and that the sound source is located at a depth y. in

the first layer. The speed of sound at this depth is

__Co = cs+g Yo (461)

Vertex

Consider first the problem of locating a vertex in the

first layer. The vertex occurs at the point where 0 = 0. The values of

x, s, and t at the vertex are obtained by setting = 0 in equations (456a),

(456c), and (456d). For example, tie horizontal range xm is
c. sin 00

Xm = - g cos o

From the sketch A it is seen that gl is positive an 00 is negative, so that

x turns out to be positive. The depth ym of the vertex can be computed by

setting 0 = 0 in (456b). As an alternative method, we note that the s.,eed of

sound at the vertex i5
cOCv = co c 0 o

The depth of the vertex may be computed from the equation (461) for the

segment of the velocity profile in the first layer. Thus,

cv = cs + g, Ym (461a)

or

Cv - C S

Ym 91 (462)
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A glance at the velocity profile shown in the above figure

indicates that if the ray vertexes, in the first layer, ito vertex speed cv

is less than the maximum value clZ at the boundary, 'and the ray will

(theoretically) never leave the first layer. Any region of the velocity

profile where the sound speed exceeds cv acts as a barrier which 'the ray

cannot cross. (On the other hand, if the source were located below the

boundary 12 and a ray were to vertex in, say, the second layer with a

vertex speed Cv slightly smaller than c1 2 , this ray would be confined to

layers 2, 3, 4, and 5, and would vertex at a depth in layer 5 where the

sound speed is cv.)

Limiting Ray

The limiting ray from a source in layer I vertexes at

the boundary y 1 2 . Its vertex speed is therefore

Cv = c 1 2

The problem of locating the limiting ray consists of determining its initial

angle, which we shall call 0e. This is found directly from Snell's Law,

where

c=c 12 ; 0=0; o =0  L

Thus " C o

Cos = (463)

The values of x, s, andt are determined by setting 0o= OL and 0=0

in the appropriate equations.

Ray Path in Other Layers

If the initial angle is steep enough, the ray will cross into

the layers below. The value of x at the boundary between layers I and 2 is

Co
Xo (sin 012 - sin eo) (464)x12g -Cos 02
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To determine the value of x at any depth in the second layer, We return to

the original solution (451a). The vertex velocity cv remains constant in

all layers, so that we may retain the factor co/Cos 0o. The initial conditions

for the ray in ihe second layer are

x=xi 2 when 8=O0,

Therefore the increment of x in the second layer isc
o

X -X 1  g - (sin O - sin 012 )  k465)
9- 2 Cos 0

At 'he boundary between layers 2 and 3, (465) becomes

02 (cos 923- 012) (4 6 5a)

The increment in the third layer is then

a xo e vl is o (sin 8 - sin Oz3)

and so on. The cumulative value is the sum oi all the increments. For

example, in the third layer,

x- x1 z + (xz3 - x1Z) + (x - x2 3 ) (466)

The corresponding values of s and t are obtained in a

similar manner.

In tracing a ray from the source outward, we continue the

I process indicated above until either a depth is reached at which the sound

speed exceeds cv, in which case the ray vertexes and returns toward the

source depth, or else the surface or bottom is reached, in which case the

ray is reflected. These are some of the ground rules which one incorporates

into a computer program,

10. Spreading Loss

Ray theory enables us not only to trace ray paths but also to

compute the spreading less. It will be recalled that the spreading loss at

j ,ny point on a ray is 10 log of the ratio of the intensity at the standard

1-yard reference distance to the intensity at the point in question, assuming
I i,23



that the effects of attenuation and other losses are neglecte d . To estimate

the intensity ratio we take a small bundle of rays and observe how they

spread out. Let I1 be the intensity at the 1-yard point, that.is, at the

point where

S s 1 = I yd

and i be the intensity at the distant point. Let AA i be the small area

intercepted by the bundle at the I-yard point and AA the corresponding area

at the distant point. If no energy is lost by absorption or scattering, the

total energy in tLe bundle remains the same at all distances from the

source, that is,

I, AAl IAA

or Ij AA -- = -- (467)

SO URCE"

To evaluate this ratio we assume that there are no horizontal gradients

and that the rays spread out equally in all directions in azimuth. We

select a bundle having a reccangular cross section defined by the four

rays SP, SQ, SP' and SQ', as indicated in the sketch below. When

viewed in elevation, the rays SP and SQ make an angle 0o with the

horizontal, the angular width of the bundle at the source S being A00.
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When projected onto the horizontal. plane, the bundle is enclosed within
the two straight lines SP" and SQ" separated by an angle A . The one-
yard reference distance sl, which for all practical purposes may be
regarded as a straight line segment, is shown as SP I . The horizontal

Mkr

SIO P
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coordinate of P1 is the projection of SPI on the horizontal plane, namely,

s 1 cos 80. The dimensions of the little rectangular area AA 1 are

therefore sI cos 00 A5 and s, Aeo; hence,

AA 1 = S cos 0 A8O A

F If we denote the width of the bundle at the far point by Aw, the area

AA is

AA x Aw A

and the intensity ratio is

I s cos 00 A 0o

We must now express Aw in terms of things we know. If we consider the

change in x when y is held constant and 0o increases by A 0 , we see that

x decreases by an amount equal to the length of the horizontal segment PR.

Furthermore, if the ray angle at P (and also at P', since AOo is exceedingly

small) is 0, then in the right triangle PP'R we find that

Z AW AX -xsin 0

6N and the intensity ratio is -

xI sin 0 AxI
-I- i SzCos 00 Aoo

- c 0y= const.

Inthe limit as AGo goes to zero this becomes

1I x sin ax
I Cos 0 b o  

(468)

'fhe spreading loss is

Nspr =10 log (469)

Equation (468) is a general result whose validity is limited

only by the requirement that the sound speed must -not vary in a horizontal

direction. We shall now apply it to the case of constant-gradient layers.
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Single Layer

a When the ray path lies entirely within a single layer of

constant velocity gradient, the horizontal range is expressed by (456a).

In taking the derivative of x with respect to 0o we must recognize that

the angle 0 at the fax end of the ray is also a function of 0o. Thus,

~c~r

Cos e=- cose o

Co

Since we are interested in the rate of change at constant depth, c is a constant.

s0 c sin 00 - cos 0 sin 0s 00 iCo cos 0o

or

b8... sin 0o cos0 (471)

- o - cos 00 sin 0(

Insertion of (471) into (470) yields

bx -s ksin 0 - sin 0) (472)i o- g cos2 O0 sin 0

or, from (465a)

C x x

aX0 cos 80 sin 0(

The desired result is obtained by substituting (472a) into (468)
1I x ( 7 3

i0 I cosZ 82 (0

From this result we see that in a single constant-gradient

Alayer the intensity is inversely proportional to the square of the horizontal

range. Incidentally, in the limiting case where the velocity gradient is

zero and the rays become straight lines, the distance s along the arc is

JC
S: cos 0o

and the intensity ratio boils down to the standard inverse square law.



Multiple Layers

We shall illustrate the geheral care by considering three

layers. To obtain a/21 o , we take the derivatives of each of the three 1 -

terms of (466). The first term has already been derived in (47a), where

all 'weneed to do is substitute XjZ and 012 for x and 0. Thus

XlZ m l (474)

cos 0sin

The derivative of the second term (465a) is
N~x.3 -x12) co sino 00I~

boo23-xii c0  s~ o 0(sin 023 - sin 012)

a -123 ao1z
+ I (Cos Cos 0t

cos 0 o boo 0lz bo o

The derivatives b 0 1 2 hOo and c02 o are obtained by substituting the

appropriate values into (417), namely,

B012 sin 00 cos 012 a023 sin 0 cos 023

-oo cos eo sin OlZ -- Oo  -cos Oo sin 023

The result is '

N(x3 -xi 2 )_ c. sin 000o g2 cos2 o sin OiZ sin (sin 023 - sin 12)

or

(x23 - XlZ) (x2 3 - x 1 Z) sin 00 (474a)
6@o cos 00 sin 023 sin 04Z

Similarly, the third term yields

- x231' (x - x2 3 ) sin Oo

aOo  =-Cos 00 sin 0 sin 023

The derivative of (466) is the sum of (474), (474a), and (474b),
a x si o Xlz x23 - xI2 x -. 7.3

= cos 00 sin 01 s s sin 023 si 0 + sin e I
and the intensity ratio (468* becomes
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i x sin 0 0 sin _ _X_ _ X2 3 - X 1 2  x-3 1 (2

cosZ 80 Lsin 01? sin i 0sin 023 sin 812 sin 023 si 0 ,

-The generalization of (475) to the case of more than three layers should now

be evident. For two layers (475) takes the form

11 x sin0 sin 0

= cos' LX12 si 02 +x- X1 2 ) sin 02 (475a)

Here again we see that in the limiting case of straight line-0
propagation, where gl g2 = g3,A all the angles are equal to 00 and equation

(475) boils down to the classical inverse square law. The presence of the

refractive layers modifies the inverse square law by multiplying the

increment of x in each layer by a factor involving the sines of the angles.

For example, in the second layer the increment (x23 - x 1 2 ) is multiplied

by the factor sin 0o sin 0

sin 823 sin 012

These factorE, however, are capable of producing drastic effects. Let us

examine a few of these effects.

Focusing Effect in a Sound Channel

Consider the case of two layers where the upper (first)

I layer has a negative velocity gradient and the lower (second) layer has a

positive gradient. We have already seen that this is a sound channel. Let

the source be placed in the first layer and consider the ray which leaves

the source horizontally, i. e., 0o = 0. The intensity ratio (475a) becomes

in this case

11 x x 1 2 sin 0
I s 2  sin 0I2 C0521 0

After this ray crosses the boundary it will vertex in the second layer. At

the vertex the angle 0 is zero. Therefore

Ii

0, when 0Oo
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Here we see that if the ray leaves the source horizontally, the intensity

will be infinite at every vertex in the channel. These are focal points

where the rays converge after initially diverging from the source.

Although ihe mathematics becomes Eomewhac messy, it

can be shown that focal points occur also for rays which leave the source

at other angles. The locus of such focal points is called a caustic. 1he

intensity at a caustic is very high and signals can be expected to be very

strong.

Limiting Rays

Consider now the opposite two-layer case in which the

positive gradient occurs in he upper (first) layer. The limiting ray from

the source will graze the layer boundary, so that 012 will be zero. Let
0 denote the initial angle of the limiting ray. (OL is negative in this case.)

The intersity ratio at the point of tangency with the boundary is obtained by

setting Oo = iL, 0 = 612, and x = x 1 2 in (473) or (475a).

I s~X' co2

At this point the ray splits into two branches. Since the near branch remains

within the first layer, the single-layer formula k473) holds throughout. To

determine the intensity in the far branch beyond the point of tangency, we

see that both x and 0 increase, while 612 remains zero. Clearly the

intensity ratio (475a) is infinite at all values of x beyond x 1 2 . This analysi.s

shows that as we approach the shadow zone from the near side, the

intensity remains finite all the way to the limiting ray. On the other hand,

as we approach the shadow zone from the far side, the intensity approaches

zero.

Spurious Caustics and Shadow Zones Due to Constant-
Gradient Approximation

The procedure of approximating a ccntinuously changing

gradient by a number of constant-gradient layers leads in certain instances
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to focuaing effects and in other instances to small shadow zones which are

not actually present in the ocean. We have already mentioned the behavior

in the vicinity of a sound speed maximum. A discussion of other limitations

of the constant-gradient approximation will be given in a later section.

:11. The Naval Air Development Center Ray Tracing Program

A comprehensive ray tracing program, based on'the const~tiE-

gradient approximation, is currently available on the IBM 650 digital

compiiter of the Aeronautical Computer Laboratory. The program can

handle up to 50 different constant-gradient layers. The input data for the

velocity profile may be specified in terms of either the temperature or the,

sound speed at each of the layer boundaries, including the surface and the

bottom, and may be expressed in any of the following ways:

(a) Temperature in °F; depth in feet.

(b) Temperature in °C; depth in meters.

(c) Sound speed in fVsec; depth in feet.

(d) Sound speed in meters/sec; depth in meters.

If the input data are expressed in metric units, the machine automatically

converts to English units. When the inputs are temperatures, the machine

assumes a nominal salinity of 34 parts/1000 and computes the sound speed

from equation (447). The computer will also accept salinity inputs for Ae

with equation (44). Other input data include the following:

(a) Source depth.

(b) Acoustic frequency. The computer can handle up to

four frequencies at a time.

(c) Depths at which outputs are desired.

(d) Instructions for termination of rays.

The program incorporates provision for both bottom and

[ surface reflections. The bottom loss is programmed at a function of the

acoustic frequency and the grazing angle of the ray, in accordance with a
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set of equations representing average bottom conditions. No comparable K
provision has been included for surface loss, but any desired constant

value may be inserted. When a ray strikes the surface or the bottom, it

is reflected and continues on, or if it passes through a maximum or a
: minimum, it likewise continues on, cycle after cycle, until the machine is '

told to stop.

The attenuation coefficient is programmed as a functioni

frequency and temperature in accordance with (3g), (317) 3W 1 (:3).

The theoretical attenuation loss is evaluated from the integral

sk

Natt = ads
0

where the attenuation coefficient must be expressed as a function of the

distance s along the ray arc. The machine program approximates the

integral by a sum

E a i As i
1

where each a. is a constant whose value is the average of the values at the
1

beginning and end of each interval of computation.
The following combinations of quantities may be computed at

the option of the customer:

(a) y, x, 0

(b) The quantities in (a) plus Nspr

(c) The quantities in (b) plus s and t

(d) The quantities in (c) plus Nw

The outputs are automatically tabulated at all layer boundaries

and at all vertices. Reflections at the surface and bottom (in addition to

maxima and minima) are considered to be vertices, Outputs may lAso be

computed and tabulated in equal depth increments between any two desired

limits. Any desired increment may be specified. In addition, provision is

6 132



made for specifvingup to 10 arbitrary "special" depths. It is also

possible to delay at the incremental and special depths until after a speci-

fied number of vertices have been passed.

Two different modes of computation are available: families

of rays and limiting rays.

(a) In the computation of ray families, the initial angle of each

ray is specified as an input. The procedure is to specify the initial angle

of the first ray, the increment by which the initial angle is to be increased

for successive rays, and the value for the final ray.

(b) There are several options in the computation of limiting

rays. A velocity profile may have more than one maximum point. In

addition to maxima occurring within the volume of the ocean, the surface

will be a maximum point if the surface layer has a negative gradient, and
0the bottom likewise if the lowest layer has a positive gradient. The

4 customer may specify the boundary at which he wishes the limiting ray
I h otma lieieirhaoesyae a oitv rdet h

computed. If no such specification is made, the machine program selects

the depth at which the largest value of c in the entire profile occurs.

Computations may be made for only the near branch of the

limiting ray, or only the far branch, or both.

The following options are available for terminating the

computation of a ray:

(a) After a specified number of vertices (including surface a.'u!

bottom reflections) have been passed.

(b) When a given depth is reached after a specified nurmber ol

vertices have been passed.

(c) When. a specified value of horizontal range x is reached.

(d) When a specified value of propagation loss at a specified

frequency ha3 been attained, or, if the propagation loss is not being computAeo,

the spreading loss may be used as the criterion for stopping.
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12. Limitations of the Constant-Gradient Approximation

- We have already seen that a point of maximum sound speed

between two adjacent constant-gradient layers leads to the prediction of

shadow zones in which the spreading loss is theoretically infinite. Although

such a concept is a mathematical fiction, since ideally sharp boundaries

between adjacent layers never occur In the real ocean, it is nevertheJess a

reasonably good approximation in many instances.

There are other siu'ations, however, in which the constant-

gradient layer approximation predicts some very strange intensity patterns

which do not exist at all in the ocean, These occur when a smoothly curving

velocity profile is approximated by a number of straight-line segments. If

the sound speed in this portion of the profile exceeds the sound speed at

the source, those rays which vertex at depths in the vicinity of a layer

boundary Nvill exhibit some wild fluctuations in spreading loss, and the

strange thing about it is that the usual limiting process of approximating

the smooth curve by taking more and more straight-line segments of

shorter and shorter length, does not work, It merely results in more and

more wild fluctuations.

Two different types of behavior occur, depending on whether

the curvature of the velocity profile is concave or' convex. A typical

example of the concave case is the situation in which a strongly negative

gradient gradually tapers off with increasing depth, as illusteated in the

left-hand diagram below. On the right is shown a stra.ght-lirie segment

approximation.

C. C
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Let us investigate what happens at one of the artificial

layer boundaries. Consider the case of two negative-gradient layers

illustrated below. The lower layer, containing the source S, has the

rR,

veaker gradient. We shall call this the first layer. The upper layer J,

ie second. Rays from the source may be grouped into two types,

Lepending upon whether they lie below or above the ray SRZ which grazei;

the boundary between the two layers. We shall call this ray a limiting

ray (although it is not a limiting ray in the strict sense). All rays below

rthe limiting ray remain entirely in the first layer and exhibit no u!asua.

characteristics, SR 1 is such a ray. Rays c the second type, which Jie.

above the limiting ray, penetrate into the second layer where they are

refracted more sharply because of the stronger gradient. They therefot-e

return to the first layer at a somewhat shortened range and cut across

some of the rays of the SRj type. SR 3 and SR4 are typical examples.

Let us now select some fixed depth below the boundary,

L such as 00', and investigate the behavior of the horizontal range x at this

4,i depth when the initial angle 8o is varied. For all rays below the ]imiting

ray the horizontal range increases smoothly with 00, as indicated by the

crossing points Q1 and Q2 . As soon, however, as the rays begin to

penetrate into the secornd layer, the horizontal range takes a sudden drop,
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as indicated by the crossing Q3 . As 80 is further increased, the range J,

passes through a minimum and begins to increase again, as indicated

by Q4. The behavior is shown in the accompanying graph. The infinite

slope of the curve immediately beyond the limiting angle signifies that the

intensity is zero aid the spreading loss infinite. The minimum point of

the curve is a point of infinite intensity, since here the horizontal range

does not vary at all with 0. This is a focal point and the spreading loss

is negatively infinite. In the small sector of 00 between the limiting ray
,. and the "focal ray" the spreading loss varies all the way fromn + to -0"[

Furthermore, it will be noted that every point in the water in this hori-

zontal range interval is reached by three rays - one below the limiting ray

and two above. No shadow zone exists, even though we computed zero

intensity at 3ne point for one of the three rays. Beyond the minimum point

the horizontal range increases again and the spreading loss ultimately

settles down to reasonable values. The smooth dashed curves show the

range and spreading loss computed from the continuous velocity profile.

At different depths the focus occurs at different ranges.

The constant-gradient approximation thus generates a caustic.

In the reverse case, where the negative gradient becomes

stronger as the depth increases, the velocity profile has a convex curvature.

The corresponding two-layer approximation for this case shows just the

opposite effect. Here the upper layer has the weaker gradient. Rays which

penetrate above the layer boundary suffer less refraction and return to the

boundary at longer ranges. Plots of horizontal range and spreading loss

vs. 8o for this case are shown on an accompanying graph. Here it is seen

that beyond the limiting ray the x curve takes a jump beginning with infinite

slope, and gradually settles down. Meanwhile the spreading loss jumps to

infirtity, then decreases to a minimum value, increases again, and gradually

settles down. The infinite Loss in this case corresponds to an artificial
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shadow zone. The rays do not overlap. The two dashed curves show the

range and spreading loss computed from the continuous profile.

These effects may be shown mathematically as follows. Let

the gradients in the two layers be gl and g2 . The source S is in the first

(lower) layer. Consider a ray which penetrates into the second layer.

Let the sound speed at the source be co . As indicated in the sketch, 00

is the initial angle of the ray, 012 and XIZ are angle and horizontal range

/ L .. y.....

at the first crossing of the boundary 12, 021 and X21 at the second

crossing, and 0 and X at the point P in the first layer.

The range X. is the sum of three increments in the manner

of equation (466). Inserting expressions of the type (456a) and (464), we

obtain

X (sin OIZ- sin 0.)+ -(sin OZI-sin 01Z)+-(sin 0-sinezi1

From Snell's Law it is evident that

)21 = -012

Substituting this value into the above equation and combining terms, we

obtain
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SCOseo g (sin - sin 0o) + 2( sin (476)

The first term in (476) gives the value of x which would be obtained if the

second layer ,had the same gradient as the first. The second term shows
tvhe

the effect of the discont).nuity ingradient.

To simplify matters, let us assume the point P to be at the

same depth as the source, so that
0!e= -0 e o I

Also, since the gradients are both negative, let us introduce the positive

values

g 1 =-g, and g2' =-g 2

Equation (476) then becomes

Z c ° ta n ° gEA sin 9 12x - -( -I )J (47 6a)"If. gl . -9 "2 sin e

The corresponding expression for the intensity ratio can be

obtained by insirting tie appropriate expressions for the increments of x

into (475). Thus

1 x sin 00 sin e cO  sin 012- sin 00 cO  sin 02 1 -sin 012" s-= os glCos 00 sin 012 sin 00 g2 gcos O---0-- sin Ozi sin 0i2

sin o- sin_ 2110, g, cos 00sn01o 1si 1

• ~ ~ 0 0 s i n 0 - /O sin02
+ 01

g, cos 00 sin 0 sin g

x c sin0 0 sin) 

- t--I- --

s1Cos3 

191
And if 0 0 we obtain

.x cosin 00 gW sin 00 47

sl gI gO 0 2  sin 02-(47
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The first term in (477) gives the intensity ratio -which would exist if there

were only one layer. The second term shows the effect of the discontinuity.

The critical factor is the ratio of the two sines in (476 a) and

(477), the one being the reciprocal of the other.

To investigate this ratio, let

eo = eL + Ae (478)

wheire OL is the initial angle of the limiting ray. Since the limiting ray is

. tangent t(-o the boundary 12, where we shall assume the sound speed to be c12,

we see from Snell's Law,

C12  1 cos 812

c cos cL Cos eo

so that

sin 0 1 2  = l- os--- TeL- cos eL

which may be transformed tr_
/sin (Do.+ OL) sin (Go - eL)sin e12 cos OL

Insertion of (478) yields the ratio

sin 012 _sin (20 L + AO) sin AO

sin 00 cos OL sin (OL + AE) (479)

Here we see that as 00 approaches the limiting ray angle OL,

i.e. , as AG approaches zero, the ratio of sines (479) also approaches zero.

The reciprocal of this ratio, which appears in the formula (477) for the

intensity ratio, becomes infinite. The horizontal range is thus changing

infinitely fast with respect to Go.

In the concave case discussed earlier, the second layer has

the stronger gradient. Hence

g' > gl

or I . > 0
g13
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In this case x takes a sudden drop, as may be seen from (476a), and the

sound rays double back on themselves. While this is occurring the second

term in (477) is numerically larger than the first and the intensity ratio is

negative. As eo increases still further, the second term in (477) becomes

numerically smaller until a point is reached where the two terms cancel.

At this point x becomes stationary and the intensity ratio goes to zero; the

spreading loss is - co. This is the focal point. As 00 continues to increase,

x begins to increase again and the spreading loss begins to approach its

normal value.

In the convex case the upper layer has a weaker gradient and

92 is less than g1 . In this case the factor

g1

is negative and x experiences a sudden increase. The spreading loss shoots

up to infinity. But now a further increase in 0o continues to increase the

range. The second term in (477) decreases rapidly (from infinity) at first,

then more slowly. The intensity ratio thus decreases at first, but later

increases again, due to the increase in range.

Mr. M. Ak Pedersn. of the Navy Electronics Laboratory has

investigated this problem extensively and has shown * that, when a continuous

concave gradient is approximated by more and more constant-gradient

layers, the approximate horizontal range approaches the true value in a

very peculiar fashion. The curve acquires more and more scallops. To be

sure, the scallops become smaller and smaller in size but, however small,

they nevertheless remain, and each scallop gives rise to infinite values

of spreading loss. In the limit, therefore, the horizontal range is accurately

computed, but the spreading loss computation becomes worthless.

t7J..S.ALVo 3,y p. 4V.L51 $4 I du re N(11 10 JjI
*J. A.S. A., Vol 33, p. 465 (1961)
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As a solution to this problem Pedersen has suggested a U
quite different approach whereby the profile is approximated by

curvilinear segments which are fitted together with no discontinuities

in slope.

13. Method of Curvilinear Gradients

On first thought the simplest form of curvilinear segment

would appear to be a parabola, such as

c =A+By+ Cy2

However, this function does not lead to a practical analytic solution. It

turns out that a reascnably simple solution can be obtained from a function

of the form
cag

Ca = _7) 480-I - ka (Y - Ya (80

This function gives three different types of curves, depending upon the

algebraic signs of the constants. These are:

Type I: Caz 0, ka > 0

Type II: caZ >0, ka <0

Type II: ca 2 < 0, ka > 0

Each of the three types leads to a different form of solution.

The basic differential equation employed in this method is

(451), which may be rewritten in the form

dx cot 0 dy (481)

The angle 0 may be expressed as a function of y by Snell's Law

c
Cos e = -

cv

Substitution of (480) yields

cos o = / ka (482)Svf I ka (Y -ya) z]

sinO /.cv - c - Cvz ka (Y a (482a)
cv' [ -ka (Y -Ya]8
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The algebraic sign of sin 0 depends upon whether the ray is ascending or

descending and is handled in the same manner as in the constant-gradient

method. Insertion of these values into (481) yields

dx- ca dy (483)v 2 -c a  v r (Y a) a

Equation (483) takes on a different form for each of the three types.

Type I: 'A

Let cv - a a- (Y -ya) (484)

Then ca dw
dx : -v-a

The solution is -

x= +  
-" sin- w + constant (485)

I

Type II:

Since ka is negative, let
t_

j W==~= (Y -ya) (486)

Then dx Ca dw

dx- v +WZ
c~v ,jka-

and X a log (w+ + I) + constant (487)

j Type III:

Here we define w as in (484). Since ca 2 is negative, the differential equation

is
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and the solution is

x= - a log (w + - 1) + constant (488)
ca

The constants of integration in (485), (487), and (488) are

evaluated in terms of the initial values of x and y in the particular segment

to which they apply. The velocity profile is divided into a number of

segments, each of which is fitted by a function of the form (480). As a ra,

is traced through one segment after another, the x, y coordinates at the

end of one segment become the initial conditions for the next.

One price which must be paid for the curvilinear segment

method is the problem of curve fitting. There are a number of possible

methods of fitting curves of the form (480) to the velocity profile data,
Progle data

which are usually available in the form of a table of sound speed data at

discrete depths. In order to avo;d the difficulties of the constant gradient

approach, it is necessary that there be no kinks in the curve. Two adjacent

segments must meet with the same slope.

Where practicable it is desirable to fit a single segment to a

considerable number of points by the method of least squares. When this

is done, adjacent segments will not in general meet with the same slope. I n

this case a gap is placed between the .wo segments and is filled by a pait C'

"bridging curves. " Each curve has three constants making a total of six,

which may be adjusted to meet the six'requirements:

Point and slope at each end (4)

Bridging curves meet at same point with same slope '2)

We shall not discuss the curve fitting probtem in further

$detail, except to poirt out that when a profile is built up by successively

adding segments, two of the three constants for any one segment are requi.red

to fit the point and slope at the junction with the previous segment. It is

therefore Dossible to fit either the point or the slope at the pther end, but not

both.
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The curvilinear segment method is a significant improvement
F

over the constant-gradient method in those situations where the constant-

gradient approach leads to false caustics. It should be noted, however,

that in a wide variety of situations there is little difference between the two

methods, particularly with respect to ranges and travel times. Furthermore,

when data are available only at discrete depths, there is no guarantee that

the curvilinear segments represent the actual profile at intermediate points
any more z',ccurately than do the straight-line seagments. Finally, the

large amount of arithmetic required for curve fitting practically restricts

the curvilinear method to digital computers.

14. Differential Equation Method

A few years ago an IBM 650 ray-tracing program was set up

at the Aeronautical Computer Laboratory, based on the numerical solution

of the differential equations. This approach has two advaatages over the

curvilinear-segment method.

(I) The selection of the horizontal range x as the

independent variable avoids the ambiguity in the sign of 0, whict introduces

complications in other methods.

(2) The method is exceedingly flexilble with respect to curve

fitting. The only requirement is that the profile have no'discontinuities

(this requirement is of no importance, since discontinuities occur only at the

boundaries between different media). Any reasonable type of curve may be

used, and kinks such as occur between straight-line segments, ce, h.

The soluticns for 0, y, s, and t are straightforward. The four

Vdifferential equations are obtained by rearranging (450a) to (450d) and (451).

Expressed in terms of Co and os 0o, they are
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d(sin 0)i g cos o (489a)
dx co

ddv = - tan 0 (489b)
dx

ds I (489c)
x cos 0

dt _ cos 8o
dx Co cos z o (489d)

The intensity ratio is expressed in terms of the variable w (introduced in.

section 10).

Ii w

F= • (490)

The partial derivative - is taken along a wave front at right angles to the

ray. It is thus a derivative with the travel time held constant. In the sketch i

U' -P

QP is the ray with initial angle 00, Q'P' the ray with initial angle 0o + deo,
aw bX by sr l

and PR is the constant t wave front. The derivatives -real

taken at ronstant t. From the figure,
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0 - - sin ---- 00 cos 0 (491a)

ax b
0 0 = + L sin e (491b)

The minus signs in (491a) indicate that both x and y decrease with o.
The time derivative of (491a) is

d aw d Cx d by + yd
S(--' ) = - sin 0 T ) - cos 0 '--+( -T cos 0+-- sin 0e-d)-

dt 0 0  dt 0 66o dt

By (491b) the last term is zero, leaving

d w sin d xd
sin 0 cos d - (492)

To evaluate the derivatives on the right, we start with

dx Co cos? 0
dt cos 00

dy _ Co sin 0 cos 0
dt cos 00

Taking derivatives with respect to 00 at constant t, we obtain

d y Co sineo 00-iooo
COS 0~- - 2csnoscs

dt 00 Cos 0 L Cos 00()

d y) c " s o sin 0 cos 0 - kcos sin e0).
dt 210 Cos 00 LCos 00

Substitution of these equations into (492) gives
d aw co cosO '

Scos 0 0o(493)

We must now obtain a differential equatitsn for which appears i) (493).~~~~~~~~th e -, hchapas n(9

This is done by taking the derivative ofequation

dO

d a() d -g a os
=t 0~ dy 0 0- cos 0 - g sin 8-9--
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But by - aw

Therefored abO 6 W 60

d 10) 2 " - gds-7-o
= t

Finally, we must convert to derivatives with respect to x. According to

(489d) the conversion factor is

Co Cosz 0

To obtain the derivative - for the intensity ratio (490) we must integrate

two differential equations

dx co00 CO 0 00

d 6c o w (g sin o ()d - c% oos g 45
I

It is seen that the derivative of the gradient, which appears in

(495), becomes infinite at a boundary between two constant -gradient iayers,

or at any point where the slope of the velocity profile changes discontinuously.
dg o0

ArniMpulse in poduces a step in)-,n . To evaluate the step, we assure

a thir intermediate layer in which g changes ,-ontinuously between the tv, o

values, integrate over x through this layer, and then let the thickness of the

layer go to zero. In this process we may assume that all functions except
dg
dy are constant, and shall designate them with the subscript 12' referring

to the boundary. The integral is

X2 Y2 Y2d
L9 dx fdg dx dy cot 012 f dg dy

' dy d dy dy cy

-: - (g c - gl)cot 012
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The increment in at the boundary is

0

O (gz - g) o  o (496) 0I0o" t~)-co sin 012 69 12

The complete solution consists of (489a), (489b), (489c),

(489d), (490), (494), (495.), and (496).

The chief disadvantage of this method is the lolig running

time required on the IBM 650 computer. It should prove more practical

on a faster computer.

14'I
r
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TECHNOLOGY OF UNDERWATER SOUND

The Propagation of Underwater Sound (cont'd)

C. Reflection

I. Introduction

When sound waves strike the surface or the bottom of the

ocean, a combination of processes occurs, whereby some of the energy

is reflected, some is scattered in all directions, and some is trans-

mitted into the adjoining medium. The scattering depends on a number

of factors such as the roughness of the bottom and the waves at the surface,

and is beyond the scope of the present discussion. In this section we shall

assume an ideal surface between two adjacent media and shai] describe the

reflection and transmission characteristics in terms of ?lane waves.

2. Reflected and Transmitted Pressure and Intensity

The solution of the wave equation for two-dimensional plane

waves has been derived in an earlier ,section. The pressure and the two

I comlonents of the particle velocity are given by equations (132), (133), and

(134). The pressure equation is reproduced below

P=Pm e j + - - (x cos e+y sin 8 (132)

The x- and y-components, u and v, of the particle velocity vector u can

be expressed in terms of the instantaneous pre-bure

U = P os (33a)

p sin 
(i4a)

PC

In these equations the angle 0 is measured from the x-axis toward the

positive y-direction and is therefore opposite in sign to the angle ,nployed

above in the description of ray paths.
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We shall assume that the incident ray in the first medium is traveling

toward the boundary between the fix st and second media, the direction of

propagation making an angle 01 with the boundary. The density and sound 4
szeed have constant values p1 and c1 in the first medium and different

cov~stant values p2 and c 2 in the second. The abrupt change in parameters

; I JWrV-,. t-

ez C --"¢

e-t-
I v1,t4 lAC

at the boundary gives rise (in general) to both a reflected wave and a

transmitted wave, whose directions of propagation make angles of -01

and 02 respectively with the boundary. We shall identify the three wave3

by the subscripts i, r, and t. The respective pressures and particle

velocity components are

Incident: jWt -- (x cos )1 +y sin 01
Pi =  Pm i e t -Ol

ui Pi cos 91 (02)

," Pl Cl

Vic (r)3)

PISO
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Reflected: (xc -Ysin (la L
pr = Pmre (501a,

Ur = Pr cOs 01  (502a)Pl Cl

Vr =_Pr sin 01 (50Za)
P1 Cl

Transmitted:
j I. (x cos 9?2+ ysin 02)

Pt = Pmt e c(501b

Ut = Pt Cos 02 (02b)P2 c.

Pt S n 0vt = (503h)
P2 c2

Two conditions must be met at the boundary:

(1) The pressure is continuous, that is, the resultant

pressure is the same on either side of the boundary.

Pi + Pr = Pt (504)

This condition results from the fact that there is no physical mechanism at

the boun. ry to support a difference in pressure.

(2) The normal component, v, of the particle velocity is

continuous at the boundary, i. e.,

vi + vr = vt (r05) I
This condition expresses the fact that particles of both media cannot occupy

the same space or leave void spaces at the boundary. Equations (q04) and

(505) must be identically true, that is, must be true for all values of t and

for all values of x. Without loss of generality in the presem analysis we

may place the origin of y at the boundary, that is

y 0 at the boundary
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Substitution of (501), (501a), and (501b) into (504) yields at the boundary
jwt Cos 01 Cos Oz

CC2(06(Pni + Pmr) e - e (506)

If (506) is to be identically true in t and x, the exponents nust be identical.

Thu s,
xcos Ol ) (t xcOs e2

Cl C2  )

P It is seen that we have already guaranteed identity in t by selecting the

same frequency for all th-'ee waves. The condition for idcntity in x is then

cos 81 _ cos 02
cl c2

which, of course, is Snell's Law.

C Since the exponents of all three waves are identical at the

boundary, equations (504) and (505) hold for both instantaneous and rms

'4
values of the variables. .

Equation (505) may be written in terms of. the pressures by

insertion of (503), (503a), and (503b)

N" pi sin 0j Pr sin 01 Pt sin 0?- (507)
P1 c1  1 c1 p C2

> Pl ClP1 cl P2 2"

We now have two simultaneous equations (504) and (507) which may be

solved for the pressure ratios Pr/Pi and pt'pi. We shall call these ratios

the refiection and transmission coefficients and shall designate them by the I
symbols R and T respectively. The results are

sin 01 sin 02
PrSR=-- = (508Ui sn Ol1 sin 0? ( 08

Pi P asinG

andPt

2,T -- -L c. (509) ;
Pi sin 81 + sin 8 2

Pl cl P2 c 2
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The angie 02 is related to 81 by Snell's Law.

sin 02 = -cT cos?'01  (510)

The reflection and transmission coefficients may therefore be written

p1  _z co e

sin 0l - --cos2 O

R 2 si (508a)
sin 0 + PI co o

P2  cz

, 2 sin 61
T (509a)

sin 10I + L-i Jc - CosZ 0

At normal incidence both 01 and 0 are 90 degrees and the

coefficients become
P2 CZ - P1 Cl

R = (511)
P Cz + P, cl

2 p2 , 2

T = (512)
P2 c2 + p 1c

Intensity

Since the incident and reflected waves are both in the first

medium and th,. transmitted wave is in the second medium, t.e respective

intensities are

I PIZ (513a)

pr

PlC- (513b)

Pt2
i t  c (513c)
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The intensity ratios are therefore

sin 01 sin 821

Irpr ZjPc 1  P? P2
F - sin 01  sin 02 (514a)

4 s in2 0,
It PjCj, Pt) pc~pC

si 01 si (51 4b)

It is interesting to note that the sum of the two intensity ratios

(514a) and (514b) is not equal to 1, that is,

I+ It Ii

as may be seen by carrying out the algebraic operations. At first thought

this would appear to violate the principle of conservation of energy. A

cl"oser examination, hvwever, will resolve the difficulty. The rate of energy

*propagation across a surface at right angles to the direction o~f propagation is
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L

equal to the product of the intensity and the area of the surface. Consider

fhe energy falling on a small rectangular area of the interface 00' in the

sketch. Let the dimensions of this area be

t0 e aAx = CC'

in the 001 direction and one unit in the direction normal to the paper. Then

the area normal to the incident wave is B'C, the area normal to the reflecte

wave is C'D, and the area normal to the transmitted wave is C'F. where

B'G =A x sin 81

C'D = Ax sin 01

i C'F = Ax sin 82

By the principle of conservation of energy we should expect the power of the

incident wave to be equal to the combined power of the reflected and trans-
mitted waves,

Ii Ax sin 01 =Ir Ax sin 01 +It Ax sin 02

or
I r  It sin 02

Ii Ii sin 01

This result is easily verified by substituting (514a) and (514b).

At normal incidence the intensity ratios are

Ir (P2 C2 " PI c)'-- = ) (516a)
Ii (Pz C z+ P I c 1)

and It 4 p, cl p2 c
S= 2 pc) 2  (516b)Ii (PZ c z + PlCl

It will be noted that in this case the intensity ratios add to give 1, since

sin 0= sin 02 1
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3. Effects of Boundary Conditions

Rigid Boundary

Consider first the extreme case of reflection of the sound

waves from an infinitely dense and rigid solid, where

P2 c 2  O
Here we find R I? Ir = I

Ii (5:7)

TItT 2 -- =0
Ii

The wave is perfectly reflected with no phase change. Since the incident and

reflected pressures add in phase, the pressure in the solid wall is doubled.

This ideal situation is approximated in nature when sound waves in air are

reflected from a water surface. Here we have

P c = 42 sp. ac. ohms (air)

P2 c2 = 154, 000 sp. ac. ohms (water)

At normal incidence the ratios are

P2. c?, 1 -. 00027
R .= O 99945

1+ 1 Cl I + .00027

1+
P2 c2

2

r _ __-) = 0.99891
I Pi

t = p1 c 1  Pt = 0001090

li P2 P2  Pi
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Thus, the reflected and incident intensities are almost equal and the trans-

mitted intensity is about 30 db down.

Free Boundary

Consider next the opposite extreme of a vacuum instead

of a soid wall. If

-" P2 c 2 = 0

we have
I.. R= -1 1 i

1 (5,8)

It
T= 0 - 0 9

In this case the adjoining medium cannot support any pressure at all, so

that the incident and reflected pressures must add to zero; hence the ratio

is -I. The reflection therefore involves a phase reversal, that is, a

phase shift of 180 degrees. This case is approximated in nature by the

reflection of waves in water from an air surface. The following table list3

the various ratios as a function of the angle of ircidence E in water. The

angle of refraction in air is computed from Snell's Law.

01 Tr-12 Pr Pt I it
deg. deg. Pi li-

o 77.3 -1.00000 0 1.ooooo 0
15 77.7 -0.99986 0.00014 0.99971 0.00008
30 79.0 -0.99972 0.00028 0.99944 0.00028
45 81,1 -0.99961 0.00039 0.99922 0.00056
60 83.7 -0.99952 0.00048 0.99905 0.00083
75 86.7 -0.99947 0.00051 0.99895 0.0010.
90 90.0 -0.99945 0.00055 0.99891 0.00109

It will be noted that the intensity loss at normal incidence is the same

whether the sound waves are traveling from air in'x7 water or vice versa,

as may be seen from the symmetric form of (516b).
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Total Reflection

When the speed of sound is larger in the second medium,

i.e., when c 2 > c 1, the critical angle of incidence is giver, by

: = --C l / 1 C l ) 5 9
cos 8c c or sin 0c  (J.) (519)

C2  c
Whenever the angle of incidence is less than the critical angle, i. e., when

81 < 0c , the angle of refraction ceases to exist. In this case

c 2

cos 2 - cos 81> 1

When we try to compute the sine of e2, wie obtain an imaginary number.

kC2

sin 82 j - )'cos, 9I - 1 (520)

To investigate the significance of the imaginary sine,

let us substitute this value into the fo:mula (501b) for the transmitted

pressure. The result is

jW) -c(x cOs 02 - y. ) cos2 8 )J
pt pmt e L c?

It is seen that the coefficient of y in the exponent is now real. Thus, in the

second medium the pressure varies exponentially with the distance from the

boundary. It is clear physically that the pressure must decay rather than

build up, and hence (assuming y is positive in the second medium) the lower

sign in (520) must apply. The transmitted pressure is then

Sc) 2 Cos) - jW(t - (521);' --X2Vl c os 81- C~ c2se

pt = pint e e

where, of course, () 81

Upon substitution of (520) into (508a) the reflection

coefficient becomes
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I I:
sin 01 + j - cos e _- )Z

R =c (522)

sin 01 - -sZ -

To simplify the writing, let

a = sin 01 (523)

Cl
b = o (523a)

P2 _ _ __Z_ C_

so that
a+jb - (a+jb)(

R a-b a+ 2 (522a)a - jb a2 + b?

The reflection coefficient is thus a complex number whose absolute value

is

IRI =
VlXa - jbI

At angles less than the critical angle, the magnitude of the reflected pressure

is equal to the magnitude of the incident pressure, and the power is there-

fore totally reflected. TherJ is, however, a phase change, whose value

can be readily determined if the reflection coefficient is expressed in the

exponential form
a+ jb j 5 b

R 7( + =- eJ (22b)

from which we see that

oZ9 C, )zI~ b -c?~54

tan - PI sI (524)
2 a P2  sin 61

At the critical angle the numerator of (524) is zero and hence the phase

change is likewise zero. As El decreases from Oc to 0, the numerator of

(524) increases and the denominator decreases. Thus c increases from 0

at the critical angle to 180 degrees at grazing incidence.
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It is of interest to note that although the incident intensity

is totally reflected from the boundary, nevertheless a certain amount of

acoustic energy is present beyond the boundary. From (521) we see that

the transmitted pressure is a wave which travels parallel to the boundary

and whose amplitude decreases exponentially with the penetration distance

in the second medium.

Angle of Intromission

In the preceding discussion it has been tacitly assumed

that if one medium has a greater density than another, i. will also have a

higher sound speed. This is not necessarily true. Oceanographic measure-

ments have demonstrated that there are areas of the ocean where the bottom

sediments (which of course are denser than water) have a lower sound

speed. Such areas exhibit very peculiar reflection characteristics, as

we shall now show.

Assume the following:

P2 P1

c2 < Cl

P C2 > Pi Cl

The reflection coefficient (508a) is

sin Ol - c cz 1 +sin2 O1
R- (508b)

sinS 01+h so- s I+ sin 0 1

Since the sound speed in the second medium is less than in the first, there

is no critical angle and 01 may range all the way from 0 to 90 degrees.

It is clear that at grazing incidence, where 01 = 0, the coefficient is

Pi 1

i' R P 7,- _ _ = -
P I /c'

P? 16-

6 0
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whereas at normal incidence the coefficient is

12 CZ
1  cR = - ZC I

PI clI+
P2 Cz

At small angles of incidence the coefficient is negative and at large angles

it is positive. There exists, therefore, some intermediate angle at which

the coefficient is zero. Setting the numerator of (508b) equal to 0 and

solving for 01, we obtain

csin 0 = (525)
VTI

This angle is called the angle of intromission. A sound wave incident on

the boundary at the angle of intromission will produce no reflected

intensity; it is totally transmitted. The accompanying graph contains a

plot of the reflection coefficient and the reflection loss in db calculated
~from data obtained by Fry and Raitt " at a Location in the Pacific Ocean.

The density and sound speed ratios are

P2 Cl
P- 1. 365; - = 1.026

PIc
It is seen that at a zero angle of incidence in the water (ray horizontal)

the reflection coefficient is -1, indicating perfect reflection with a

180 degree phase change. As the angle of incidence increases, the

J. C. Fry and R. W. Raitt, "Sound Velocities at the Surface of Deep

Sea Sediments, " Journal of Geophysical Research, Vol 66, No. 2, p. 589,

1961.
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ide of the reflection coefficient drops rapidly to zero, the angle of

ission being approximately 15 degrees. P 3 the angle of incidence

;es further, the reflection coefficient becomes slightly positive but

axceeds a value of about 0. 14. The corresponding value of the

ion loss starts at zero at grazing incidence and increases rapidly to

j at the angle of intromission. Above this angle it decreases, reaching

mptotic value of 17 db at normal incidence. A bottom of this type is

poor reflector, the loss being 17 db or higher at all angles of

nce except in the immediate vicinity of the horizontal.

Note on Pressure Levels

We have seen that so long as we restrict our attention to

in the water of the ocean, we may ignore the ,,ariations in pC and

the intensity as being proportional to the square of the pressure. Under

conditions it makes sense to refer intensity levels to pressure units.

ver, when we are concerned with the passage of waves between media

,g widely different values of p., ve must be very cauticus. The level

ssponding to a given intensity has very different numerical values ,when

essed in db//bz in the two media. For the same intensity the pressires

id P? in two media having specific acoustic impedances p1 cl and

2 are related by the basic equation

P 22  Pl 2

P2 c2 PI I

1 is the pressure level in the first medium, expressed in db/V/1 b, and

LS the corresponding level in the second medium, also expressed in

/b -, then

L2 = L 1 + 10 log-- -2 (526)

he first medium is air and the second is bea water, then

L L+ lo154,000[L Z = L 1 + 10 log 42

= LI + 35.6 db
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4. Image Sources

In the dis-ussion of refraction we learned that wh.i wavos

from a source in one medium are refracted into a second medaum, they

appear to be diverging from an image soarce at a different location. In

particular, if the source is locateo at a perpendicular distance H I from

the boundary, then for normal inclden'=e the waves in the second medium

will appear to diverge from an image tocated in the first medium at a

distance H2 from the boundary: where
c
1

H2 c-- H1  (527)

and the source and its image lie on the same line ncrmal to the boundary.

Our problem now is to determine the relative source 1evels

of the source and its image. Let P 1 denote the power of the source.

Assuming inverse square spreading, the intensity of the incident wave at

the point where it first reaches the boundary is

P
I = 4 1r k528)

The ratio of the transmitted to the incident intensity (516b) is

I 2  4 P Cl P2 c2  (59)

(P 2 c2 + P1 cl)2

In order to generate an intensity 12 at a distance H 2 , the power P 2 of the

image source must be

P 2 : 4wH 2 12 (530N

Combining (527), (528), (529) and (530) we obtain
4 PIl-1P2 c2 Cl )p51

P2 (P 2 c 2 + PlC1 )2 (2 (

If the source level expressed in db//watt/cm is Se,, then the equivalent souice

level of the image is
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S, So + 10 log l2 )z .) (532)II

imge

where S1 is also in db/ieatt/cm . If both levels are expressed n db//b2,

an a p propriate correction m u s t be made according to (526). All distances

in the second redbu must of coursee measured from the locatiis, of the

Image.

5 As an exarnple, consider a soturce in air above the ocean, where
i == = 0. 24..

P1. cI 42 p. ac. ohms, p. c. 154, 000 sp. ac. ohms, and Cl/c 2

In teris of db watt/cm the difference in source levels is

"4( 4
og 1-54,000)

sI -SO 10 lo 42"--Y (0. 2, 2)? 42. 8 db

T,,jo factors contribute to the reduction in equivralent source level: (I) the

transmission loss at the boundary (29.6 db), whish was discussed earlier,

ancd (2) the increased divergence of the waves (13.2 db) due to the refraction.

5. The Lloyd Mirror Effect i

When a source and receiver are loczted at shallow depths in

the ocean, sound tr-insmission takes place over two paths-the direct pathi

and the surface-reflected path. We sh)!i simpliiy th: present discussion by

asEuming that the waves travel in straight lines and that the surface is

perfectly smooth. The geometry is shown in the sketch below. The source S

4

JS

-3- ,Yr
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is located at a depth ys and the receiver R at a depth Yr, the horizontal

separation between S and R being x. The surface-reflectei wave, after

reflection at Q, appears to have originated at the image source S', iocated

at a distance ys abo re the surface. Since the difference in length between

the two paths SR and SQR varies with the geometry (depths and horizontal

separation), it is to be expected that interference phenomena will be

observed.

Let rj represent the length of the direct path SR and r 2 the

length of the reflected path SQR (which is the same as that Z S'QR). Then

xZ+ Yr - Ys)Z (533)

r 2  'xz + (Yr + Ys) (533a)

Recalling that a phase shift of 180 degrees (r radians) is encountered when

the wave is reflected from the surface, we see that the difference in phase

between the two waves arriving at R is

A (r2 - rl) + (534)

where X is the wavelength. The two waves will reinforce each other and

hence the resultant pressure will be a maximum when the phase difference

is an integral number of cycles, that is, when

Max: A.b=2nTr n=1, 2, 3, ... (535)

Destructive interference will occur and hence the resultant pressure will

be a minimum when the phase difference is an odd number of half c-cles,

that is, when

Min: A =(2n+ 1)7r n=1, 2, 3, ... (535a)

The two expressions may be combined into a single expression

= = (Zn' + (5-_5b)

if n' is defined as follows

n' 1, 2, 3, ... for minima
1 3 5

and n' = ' for maxima
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The locus of receiver positions at which n' has a constant
value is a curve along which

rl I = (A - r )=constant

or

r2 - ri = nit constant (536)

Such a curve is a member of a family of hyperbolas having the source and

image as foci. The equation of the hyperbolas is obtained by inserting

(533) and (533a) into (536) and squaring twice to eliminate the radicals.

y 1 (537)

2

The horizontal range corresponding to a fixed receiver depth is found by

solving (537) for x

x = -f s  - 2 (538)

When the source and receiver depths are large compared with the wavelength,

the above expression simplifies approximately to
2 Ys Yrx (538a)

If the amplitude- of the two pressures were exactly equal at the

receiver, the inte ference wou"., be complete and the resultant pressure

would be 'oubled at the maxima and zero at the minima. Actually, however,

the amplitude of the surface-reflected wave is in general less than that of the

direct wave, due in part to the reflection loss and in part to the longer path.

Refraction effects 'due to velocity gradients also have a significant effect.

As a result, the interference is not complete. Ac ai, illustration, let us

assume that the amplitude ratio of the surface-reflected wave to the direct

wave is K. Let Pl and P2 denote the instantaneous values of the direct and
surface-reflected waves, and p denote the rms pressure of the direct wave.

The real values of the pressures are
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PI = 2 Cos(

2rr2

2w r
p2 = -/g KP cos (t- -- )

where the minus sign represents the phase shift due to the reflection. The

resultant instantaneous pressure is

27r r i21rr 2 .]
P1 + p 2 = rz p Cos1( t - K Kcos (w.rt

and its square is

(pl+ p2 )2 = zp1[cos2 (Wt - 2.) 2K cos (w t ) cos (t - -

+ K2 ros (w t - 2

The cross term may be expressed in terms of the sum and difference of the

angles as follows

2.ir r 2rr 2  Zirr 2 r1  +o2i(r 2 -
cos (t )cos(wt--- -) = 2 c t+

Therefore

(pI+PZ)2=2p cosz (Wt - ) KcosLt t r

27r(r 2 - r ) 2
K Cos + K'cos 2 kwt-

In taking the time average we see that the cos 2 terms average to ' the

second term averages to zero, while the third term is independent of time.

The mean square resultant pressure is therefore

(Pl+ P 2 )2 = [ - 2K cos 27 (r2 +- Kl (539)

But, from (536) and (538a)

2ir(r2 - r 1 ) 4w Ys~r
- 2yrn' 4 (540)

16Xx
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so that' 4r ys y,(ps + op2) t p (I -2K cos kJ + K 2) (539a)

The interference pattern results from the last two terms of (539a). If

there were no surface reqection, the mean square pressure would be simply

pZ. The intensity anomaly is the ratio of the actual intensity to the intensity

of the direct wave alone, and the transmission anomaly is 10 log of this ratio.

47r "s Yr
Anomaly = 10 log (I - 2K cos + K2 ) (541)

As an example let

K = 0.5

Ys = Yr = 25 ft.

X = 1.5ft. (f-3333cps)

The anomaly :s
50007

Anomaly 10 log (1.25 - cos )

The accompanying graph shows the anomaly plotted as a function of the hori-

zontal range. The first minimum theoretically occurs at infinite range

(though at long ranges the assumption of straight-line propagation has little

validity). The first maximum occurs at 1667 feet. As the range decreases

further, the curve oscillates more and more rapidly.

It is seen that the anomaly varies from -6 db to + 3.5 db.

This example illustrates the fact that surface reflections can cause significant

errors in acoustic measurements.

6. Normal Mode Propagation

There are situations - notably in the propagation of low

frequency sound in shallow water -where interference effects resulting from

repeated surface and bottom reflections are a dominant factor in determining

the nature of the propagation. In such cases, if the bottom is reasonably

flat and level, the ocean acts as a wave guide. If the wave is traveling in

certain specific directions relative to 'he horizontal, it will be reenforced

by constructive interference. In all other directions cancellation will occur.
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This scope of this discussion will be limited to the ideal case

of straight-line propagation in a homogeneous ocean. The bottom is

assumed to be perfectly flat. The density and sound speed of the water

are p, and cl, and the corresponding quantities for the bottom are p2 and

c 2 . It is assumed that

P >2 p1  and c > cl

The critical angle in water is 0 c where

c o s C =

It will be recalled that when 0 is greater than 0c , the bottom reflection

coefficient is given by (508a), and no phase shift occurs. On the other hand,

when 0 is less than Oc , the magnitude of the reflection coefficient is unity

and the phase is advanced by an angle 6 , where E is given by (524). A

certain amount of simplification may be achieved in the following discussion

if we define C as follows

Pl cos -( cl c 2 )Z:=2 tan -- < 0cE a sin 0 c
(542)

-- 0> oc

The basic concept of normal mode propagation is illustrated in

the following sketch. The waves, traveling at angles - 0 relative to the

horizontal, undergo repeated reflections from the surface and botiom. One

of the rays comprising the wave is shawn as ABCDEFG. The space between

A and C, B and D, etc., is filled with other rays all traveling at the same

SA C

-e 6

P//
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angle. Consider the up-going ray BC. Lines perpendicular to this ray are

wave fronts, one of which is shown by the line 00'. Since the wave must

have the same phase at all points on a wave front, it is seen that the wave BC

n~$ must have the same phase at P as DE has at P', FG at P", etc. The require-

ment for reinforcement is therefo-te the following:

When the wave travels the distance

PCDP', the phase must change by

an integral number of cycles.

In traveling along this path the wave suffers one reflection from Lthe surface

and one reflection from the bottom. The phase change on reflection from the

bottom is E . The direction of this change is such as to cause the phase to

advance; it is therefore equivalent to a reduction in path length. The phase

change at the surface is ir radians. Sinze this is one half cycle, the

algebraic sign iFc immaterial. We shall regard it as a retardation. To compute

the path length between P and P' we note that the same result would be obtained

if we selected any other wave front between B and C. The geometry is simpler

if we select CQ. The length of the path CDQ, which is the same as PCDP', may

be found quite simply b reflecting the ray CD in the bottom, as indicated in

the following sketch. The reflected segment C'D is equal to CD, so that the

, REFLF-CT-b S0"from
C/
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desired path length is C'Q. If the depth of the ocean is H, the length CC'

of the hypoteneuse of the right triangle CC'Q is 214. Hence

CD+ DQ = C'Q = 2H sin.e

The phase change frorn C to Q is then

2 1rn 2H sine -0 + n (543)

c1

and the requirement for constructive interference is

= 2n=r (544)

where

n1 , 2, 3,

Combining (543) and (544), we obtain

fn 4H sin (2 n - I (545)

where 6 is defined by (542).

It is seen from (545) that corresponding to each angle 0 there

is a sequence of frequencies fn which lead to a wave-guide type of propagation'.

The number n denotes the number of cycles by which the phase of the wave

changes between successive points such as P and P' on the wave front. This

type of propagation is called normal-mode propagation. The first mode cor-

responds to n= 1, the second to n =2, etc.

On the accompanying graph is a plot of fn vs. e for a typical

case where the ocean depth is 500 feet and the density and sound speed ratios

are
0.75; c- = 0.975

P2  c2

It will be noted that the curves show an abrupt change in slope at the critical

angle, which is about 14 degrees. rhe change is due to the phase angle e

which suddenly begins to increase as 0 decreases below the critical angle.
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Referring to the above example, suppose a sound source

generates single-frequency waves at 60 cps. Reference to the graph will

indicate that the first mode will propagate at an angle of 4. 1 degrees, the

second mode at 8.3 degrees, the third at 12.4 degrees, the fourth at

17 degrees, and so on. If we take a horizontal view of the pattern by

looking down from above, we see that the waves are spreading out in all

directions from the source. In any vertical plane they are traveling at an

angle 0 with the horizontal. To visualize the nature of the propagation

more clearly, let us reflect the ocean instead of the waves, as illustrated

in the sketch below, so that the reflected waves are straightened out as shown

by the dotted lines. We see that the waves are spreading out along a cone

5oSJif ACt.

"~~ -- PfAr a

in th.e manner described earlier in the sectior on cylindrical waves. The

propagation loss thus follows the law of cylindrical spreadin~g. It will be

noted further tnat the reflectioa s follow a regular pattern with a skip distance

D, where, in our hypothetical example,

D = 2H cot _

In traversing each skip distance the wave experiences one surface bounce

and one bottom bounce. If NS and N B represent the reflection loss at the

suirface and bottom, respectively, the loss occurring in a distance D is

S NS + NB . Or. the average, the attenuation loss per kiloyard (assuming D is

e::pressed in kyd) is
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Ns +N B- B
D D

if we are interested in long range propagation of low-frequency sound, where

the individual reflection losses are small and there are many of them, then

aD may be considered as an ordinary attenuation coefficient and may be added

to the attenuation coefficient due to other causes such as abso-ptiorl by the

water.

In situations such as the above example, where a critical angle

exists, the bottom loss is theoretically zero when 8 is less than the critical

angle, but increases rapidly when 9 exceeds the critical angle. It is thus

apparent that those modes which propagate at angles bejond the critical angle

will be rapidly attenuated, so that the number of modes which propagate to

long distances may b, expected to be quite limited.

It will also be noted from (545) that there is a cut-off frequency

below which normal mode propagation cannot occur. The minimum frequency

is obtained by setting n = 1 and 0 = 90 degrees in (545). In this case the phase

shift e is zero. Hence the cut-off frequency is

fmin = c (546)

In the numerical example the cut-off freauency is 5000/2000 2.5 cps. The

wavelength Xmax co, . esponding to fmin is
~cl X 4H (547)

kmax fmin

In 'he limiting case the waves are traveling vfrtically up and down and the

water depth is a quarter wavelength.

In deriving the condition for constructive interference leading to

normal mode propagation we considered only the up-going waves. It is clear

that if we had performed our analysis on the down-going waves, we should

have arrived at the same result. There is, however, another phenomenon

present which has not yet been discussed. This is the interference b.otween

the up-going and down-going waves, which results in a pattern of standing
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waves in the vertical direction and traveling waves in the horizontal direction.

If the angle 6 is measured positive upward and the vertical coordinate y is

measured positive ; • nward, the pressures of the down-going and up-going

waves may be written in the following form

j it -c (x cos 6- y sin 6)]
Pdown. = P

jtv -c (xcos 0+y sine)a

p,1, Pm e cy

where the minus sign on Pup is due to the phase change on surface reflection.

The resultant pressure is the su- of the two, which is readily shown to be

; c(t X Cos( - O

p= Zj pm sin Ly sin0 e x c ) (548)
c I I

The sine factor involving y shows the standing wave pattern in which loops

and nodes occur in horizontal planes. The complex exponential shows the

traveling wave, which propagates along the x direction with speed V such

that

(49)
Cos 0 (

It will be noted that (except where 0 = 0) the speed V is always greater than

the sound speed cl. V is called the phasie velocity. It must be pointed out,

however, that V does not represent the speed at which the energy is being

propagated. The energy of the up-going and down-going waves is propagated

with speed cI in directions making angles ± 9 with the horizontal. The two

waves are carrying equal amounts of energy up and down in the vertical

direction, so that the net trarsifer is zero. The net flow of energy is there-

fore in the horizontal direction and the speed with which it is propagated is

U = cj cos 0 (550)

U is called the group velocity.
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Let us now suppose that a number of different discrete

frequencies are present in the wave. From the preceding discussion, and

in partLcular from (545), it is seen that the different frequencies will

propagate at different angles, i.e., with diffeient values of 0. Therefore

the different frequencies will have different phase velocities V and different

group velocities U. Suppose that in the numerical example above there were

two frequencies, say, 40 and 60 cps. The 40 cps wave propagates at an

angle of 6. 8 degrees and the 60 cps wave at 4. 1 degrees. The respective

phase and group velocities are listed in the following table.

f 40 cps 60 cps

0 6.8 deg. 4. 1 deg.

cos 0 .9930 .9974

V 1.0070 c I  1.0026 c 1

U .9930 cl .9974 c1

From the table it is seen that the phase of the 40 cps wave propagates

(in the horizontal direction) faster than the phase of the 60 cps wave, wherea,;

the energy propagates more slowly. if the two waves axe emitted together

as a pulse, * it is seen that the pulse will change shape as it travels outward.

The energy of the higher frequency component travels faster, so that theoretic-

ally -if the pulse traveled far enough, the two components would separate
completely. :

It will be seen that the phase velocity of each wave is larger

than the group velocity. The significance of this fact is that as a

* Theoretically a pulse of finite duration always has a finite bandwidth.

We here assume that the pulse is sufficiently long that the bandwidth is

very narrow.
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single-frequency pulse travels outward in a horizontal direction, the wave

fronts will continually progress forward from the trailing edge to the

leading edge.

The next logical step in the argument is to consider the propa-

gation of a pulse contaning a continuous band of frequencies. We shall

not analyze this problem mathematically, but a qualitative extension of the

preceding argument shows that there is now a continuous spread of phase

velocities and group velocities. The method of analysis is to work with

the spectrum of the pulse. Suppose, for ecample, that the amplitude spectrum

of a pulse L (t) is k (f). This means that the amplitude of that portion of the

wave in the infinitesimal frequency band from f to f + df is T (f)df. The

phase of this portion of the pulse travels in the x direction with the phase

velocity V which for any given mode is a function of the frequency. The

wave form of the infinitesimal wave is therefore

27rjfft-x
(f) e df

and the complete pulse, as it travels out is

fitfl VP'S(x, t) f O(Q e df

We shall not carry the mathematics any further. However, the

concept of breaking the pulse down into infinitesimal frequency components

provides some qualitative insight into the problem. Each infinitesimal

component may be regarded as a wave of a fixed frequency such as was

described earlier. Each such component travels with a different group

velocity frora every other component. In the idealized ocean which we have

been considering, the higher frequency components will tend to concentrate

toward the leading edge of the pulse and the lower fLequency components

toward the trailing edge. The pulse thus tends to change, shape and spread

out as it propagates.

4i
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The above phenomenon in which the speed of propagation of a wave v
varies with the frequency, is called dispersion.

D. Long-Range Propagation Paths in the Ocean

1. Introduction

The performance of sonars which .mploy the conventional

near-surface propagation path is strongly dependent upon the variable

thermal conditions which prevail in upper layers of the ocean. When a

reasonably deep surface duct exists and the target is within the duct,

fairly good performance can be expected. If, on the other hand, the duct

is shallow, or the target hides in the therrnocline below the duct, perform-

ance is poor. The near-surface region is in general not conducive to

reliable long-range detection because of the prevalence of negative gradients

which cause sound rays to curve downward, creating shadow zones. For

this reason there has been increasing interest in the investigation of the

various long-range propagation paths provided by nature in the deep ocean.

In the following paragraphs we shall investigate briefly the nature of some of

these paths.

2. Bottom-Bounce Path

Low frequency sound is observed to propagate over extremely

long distances. Onhe of the significant paths responsible for this propagation

invblves repeated reflections from the surface and bottom. The normal

mode propagation discussed previously is an example. Consideration of the

bottom-bounce path for active sonar detection involves many factors which

cannot beodiscussed in these notes. Ho~vever, a few general remarks are

in order.

The principal reason for considering such a path is to over-

come the difficulties resulting from downward refraction of sound rays

due to thermal gradients. If a beam is projected downward at an angle

greater than about 10 or 15 degrees, refraction has a relatively minor effect.
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In principle, therefore, complete coverage of the surface is possible at

all horizontal ranges out to roughly 7 times tbe water depth. Coverage at

even greater ranges can frequently be obtained using shallower tilt angles,

but in this region the variable effects of refraction begin to become

important.

The principal difficulty of the bottom-bounce path is the high

two-way propagation loss. The loss each way consists of the propagation

loss in the water plus the bottom reflection loss. The longest ranges are

obtained with relatively shallow tilt angles. In this case the propagation

loss in the water is very high. As the tilt angle is increased to give

shorter ranges, the loss in the water decreases, but at the same time the

bottom loss increases due to the larger angles of incidence. These two

effects tend to compensate each other, with the result that the overall I
propagation loss is relatively insensitive to the horizontal range.

For any given type of bottom the propagation loss depends more

strongly upon the water depth than upon the horizontal range. The require-

ments therefore become increasingly severe as the water depth becomes

greater. Conversely, as the depth decreases the loss also decreases but

at the same time area of coverage also decreases.

The propagation loss also depends strongly upon the reflection

characteristics of the bottom, which vary greatly from one area to another.

In summary, the maximum available detection range via the

bottom-bounce path is determined primarily by the depth of the ccean. The

propagation losu is determined principally by the depth of thr ocean and the

bottom reflection characteristics and is relatively independent of the

horizontal range. For this reason if in a given ocean area a target is not

deteccable at relatively long ranges, the probability of detection will in

general not improve significantly at shorter ranges. Expressed in another

way, as the depth of the ocean increases, the area of coverage by the bottom-

bounce propagation path also increases, but the probability of detection

178

V



decreases over the whole area. The behavior in this respect differs from

that of conventional sonars which normally have an area of high-probability

coverage beyond which the detection probability is relatively low.

The shape of the ocean bottom also has an effect upon sonar

performance. The nature of the effect depends upon the scale of the

irregularities. Small scale roughness, such as occurs in rocky areas,

tends to scatter sound waves out of the beam, thereby increasing the effec-

tive bottom loss. Larger irregularities of the order of the beamwidth may

cause focusing or divergence effects. More commonly encountered large

irregularities, however, are of such a large scale as to be considered a

sloping plane.

A sloping bottom gives rise to range and bearing errors, the

relative magnitudes of which depend upon the direction in which the slope

occurs. Let 4B denote the direction of the slope. Looking in the direction

of the sonar beam, let B = 0 indicate a fore-and-aft tilt and B = 900 indi-

cate a later.l tilt. Let OB denote the amount of the tilt. When B = 0, a

positive 0B signifies a down-in-front tilt. When B 90, a positive

OB denotes a diwn-to-the-right tilt.

It is evident that thc! range error will be a maximum and the

bearing error ze;ro when B = 0, and the reverse will be true when B = 900.

The slant range to the target is obtained from the observed travel time. Let

us call this r;.nge r. If refraction is neglected, r consists of two si.raight-line

segments, one from the source (assumed at the surface) to the bottom and

the other from the bottom to the target (also at the surface). Let H be the

water depth and 0 the beam tilt angle at the source. If B and 0 B are known,

the horizontal range x and the target bearing error c may be computed

* from simple geometry. Assuming OB to be a small angle, the resulting

expressions may be simplified to the following
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2H cot e (I + 0B c o s B tan )(551)
1 -2 eB c os  B cot e

= sin B tan 0 (radians) (552)

If the bottom is assumed to be levelat depth H, the horizontal range x'

compuled from the same slant range r will be slightly different. To the

same approximation it is

2H cot 0 (1 + eB cos Btan 0)x' (553)
I -2 B cos cB cot 0

The bearing angle is zero in this case, of course. Combining (551) and

(553), we find the fractional error in range to be
Xf - X

-x B Cos B tan e (554)

From (552) and (554) we see that for smali tilt angles the

maximum range and bearing errors are proportional to the tangent of the

beam tilt angle. As a numerical example, suppose eB is 5 degrees and

0 is 45. In this case the bearing error for a lateral slope is 5 degrees

and the range error is 8.7 percent. Although this it, a rather extreme

example, it is clear that significant errors can be introduced if thv slope of

the bottom is not accurately known.

3. $OFAR Path

The SOFAR path, referred to previously, is the propagation

path which employs the deep sound channel)whose axis is normally located

at depths of 3000 to 4000 feet, When a source and receiver are both located

in the channel, propagation conditions are excellent. A small explosive

charge may be heard at distances of as much as 2000 miles. Although the

IV depths involved are not of current interest for submarine detection, the

SOFAR path has a useful function. in determining the location of distant

sound sources at sea. If, for example, a downed aviator or a vessel in

distress at sea drops an explosive charge which is set to detonate near the

axis of the channel, and the time of arrival at th-'ee different locations is
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accurately measured, the geographical position of the explosion can be

determined in a manner similar to LORAN.

It is of interest to note in this conncction that since the

channel is very wide there exist a number of paths between the source and

receiver, each characterized by a different number of refraction cycles, or

"orders. t Two such paths are illustrated in the sketch below. The path

.- -

of lowest order leaves the source with the !argest initial angle and executes

the largest excursions away from the axis. As the order increases, the

range of excursion decreases and the rays converge toward the axis. To

investigate the significance of this effect, let us consider the simple case

where the source and receiver are located on the axis and the velocity

gradient has a constant positive value g below the axis and a constant negativ,

value -g above it. Let co be the sound speed on the axis.

A ray whose initial angle is S1 will, according to (456a),

traverse a horizontal distance

2co
-g cos O1(

sin 01 -sin 01) g tan

between the source and the first crossing of the axis. The hocizontal range

corresponding to one refraction cycle is twice this distance

x1 = - tan 01 (555)

The corresponding time, according to (456d), is

S I + sin 01
tI  loge (556)Sg e1 -sin O,
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Suppose this ray undergoes n, refraction cycles between the source and

receiver, while a second ray having an initial angle 0? undergoes n 2 cycles

in traveling the same distance. Then

n Ctar. 1 - 4nzc o tan0 2
g g

or n 2  tan 01 - (557)
n 1  tan 02

The total travel times of the two rays are
2n 1+ sin Z1

T - log e
TI g 1I - sin Of

2n 2  I + sin 02
T 2 - '0 geI - sin 02

The ratio of the two travel times is

T 2 n2[loge (I + sin 02 ) - loge (I - sin 02)]

1 hloge (I + sin 01)- loge (1- sin 01)]

or, by (557),
_ tane01 [log e (l + sin O) loge (-sine 2 )
1  tan 02 Eloge (1 + sin 01) - loge (1 sin 01)] (558)

If we expand the logarithms in infinite series, (5;8) becomes~1
T2 tan 1 (sin 02 + T sin3 02 + ' " )

T !  tan 02 (sin 81 + L sin' 01 +..
3

1
Cos Oz (1 +T sin? 02 + ... ) (5513a)
cos01 (1+1 sin 01+

It can be seen by substituting reasonable numerical values into (558a) that

if e2 < 01, then T 2 > T 1 . Since the angles involved are small, we may also

show this by making the usual small angle approximations

cos 0 ;z : 02 and sin 0 ;z 0

Thus 102
T2  - 6 -(558b)
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From this result we see that the lowest order SOFAR ray,

which leaves the source at the largest angle and travels farthest away from

the channel axis, arrives at the receiver first. This may seem strange

since the ray actually travels a greater distance than any of the others.

The explanation is that it is traveling through a region of higher sound speed.

If we look at the travel times of the rays of increasing order,

we see that they decrease and approach a fixed limit, X (ih,, . + -h' '.4 -

a ,i* -Io) cha.,ici Thus, although the SOFAR propagation

of a pulse is a multipath phenomenon vith different paths arriving at

different times, it ends abruptly. The abrupt ending makes accurate tiing

possible.

4. Convergence Zone Path

The width of the SOFAR channel depends upon the relative values

of the sound speed in the vicinity of the surface and at the bottorm of the ocean.

The maximum near-surface value normally occurs in the first few hundred

feet and is determined chiefly by the surface temperature. In the deep ocean

the water at the bottom is very nearly isothermal at the temperature of

maximum water density, a few degrees above the fzeezing point. The sound

speed at the bottom is therefore determined almost exclusively by the

pressure, which is proportional to the ocean depth.

If the ocean depth had the critical value H1I indicated in the

left-hand velocity profile shown below, such that the sound speed at the
equal to the maximum value near the surface,

bottom were Athe SOFAR channel would extend all the way to the bottom,

C. C.

I 1 I .[I
II I I

H3

I I

I I _ _'rr ,,_ .

18T-or m
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encompassing the region indicated by the dotted line. Where the depth is

greater than HI, as indicated by H2 in the second profile, the width of the

channel is determined by the near-surface maximum. Assuming the two

profiles are the same, the width of the channel is the same in both cases,

the only difference being that in the second case there is a region of depth

excess below the bottom of the channel. In the third case shown at the right

the depth H3 is less than the critical depth and the width of the cbannel is
limited by the bottom. as indicated by the dotted line.

Let us now assume that the ocean is very deep (second case

above) and let us place a sound source near the surface in the vicinity of the

depth of the maximum sound speed. Let CB denote the sound speed at the

ocean bottom. Then there will be a limiting ray having a vertex velocity

equal to CB, which will just graze the bottom. In fact, there will be two

such rays, a direct downward-going ray and a surface-reflected upward-

going ray. All rays which leave the source at angles beyond this limiting

anigle will have vertex velocities greater than CB and will strike the bottom.

On the other hand, those rays which leave the source with initial angles

more shallow than the limiting angle will be refracted upward without

striking the bottom anc! ,ili remain within the channel. This type of propa -

gation in the deep sound channel has the remarkable property that all of the

rays (within the relatively narrow angular lin.,its) tend to return to the

surface at approximately the same horizontal range, as illustrated in the

skLtch below. The result is a very pronounced focusing or convergence

effect, if the sound is radiated in all directions horizontally, the region of

convergence is a narrow annular ring, called a convergence zone.

The radius of a convergence zone varies somewhat with

geographical location. In the temperate regions the zone radius is generally

between 30 and 35 miles. In the colder regions it tends to be somewhat

smaller, 25 miles or so being a representative value. The detailed
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acoustic structure of a convergence zone is rather complicated, being

dependent upon depth excess at the bottom of the ocean, the source and

receiver depths, and the local thermal structure in the near-surface

region. As a rough rule of thumb, the annular width of a zone is of the

order of 10 percent of the range and the gain due to the convergence (the

spreading anomaly) is of the order of 10 db - a very significant ephancennert.

Convergence zone propagation is not limited to a single zore.

As the rays spread out from a source they undergo repeated cycles of

refraction, with the result that second, third, fourth, etc. zones occur

at regular intervals. The spreading loss from one zone to the next follows

approximately the cylindrical spreading law.

In order for convergence zone propagation to exist at all it

is necessary that the speed of sound at the bottom be larger than at any

depth above the SOFAR channel axis. This condition places a requirement

on the ocean depth in relation to the surface temperature. As an e3,ample
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of such a condition, the speed of sound at the surface is related to the

temperature (in *F) by (447) with y 0,

= 4422 + 11. 25T - .045Tz ft/sec (559)

(neglecting the salinity term). In the deep ocean c may be expressed as a

function of depth by the approximate formula

.1. 8 x 10- 4
c =47 6 8 + 0. 0182y 82.3 e ftse_ (560)

where y is in feet. The minimum depth

y = Hmin

a, which convergence zone propagation can occur ma) be related to the

surface temperature by equating (559) and k560). The resulting curve is

shown in the accompanying graph. Since surface temperatures vary with
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the season of the year, the depth requirements are likewise variable.

There are some areas of the ocean where zonvergence zone propagation

occurs the year around; there are other areas where it never occuirs;

and there are still other areas where it occLrs in the winter kat not in

the summer. ThB depth requirements are most severe in ,the tror " :al
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regions and least severe at the higher latitudes. As the polar regions are

approached, the surface temperatures become lower until an approximately

isothermal condition is reached where a positive velocity gradient exists

all the way to the bottom, and the convergence zone propagation changes

to a combination of upward refraction and surface reflection.

The depth criterion outlined above rep, esents only an absolute

minimum requirement that at least one ray be propagated to the convergence

zone. The amount of sound propagated depends upon the extent of the depth

excess between the minimum required depth and the ocean bottom, since all

rays reaching the convergence zone must pass through this region. The

same conclusion may be reached by considering the rays as they leave the

sound source. The greater the ocean depth the larger will be the initial

angle of the limiting ray which grazes the bottom. Therefore a greater

fraction of the energy radiated by the source will be retained in the deep

sound channel without striking the bottom. It has been found that a depth

excess of several hundred fathoms is required for satisfactory operational

use of convergence zone propagation.

5. Reliable Acoustic Path (RAP)

In our discussion of convergence zone propagation we have seen

the value of the refractive properties of the deep ocean in providing a long-

range acoustic path between a source and a distant receiver, both located at

the surface. The convergence zone path has one serious limitation,

however; the surface coverage is limited to a narrow annular zone. The

entire circular area inside the zone, except for a small region of direct

coverage in the vicinity of the source, is blank.

Is there any way of making use of refraction in the deep ocean

to obtain solid coverage of the surface? The answer to this question is

'yes, provided the source is located at a great depth. Consider a location

where the ocean depth is in excess of the minimum requirement for

convergence zone propagation and let the sound source be placed at this
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minimum depth, i. e., at the depth where the sound speed has a value equal

to its maximum value near the surface. Then the ray which leaves the source

horizontally will traverse a path similar to half of a convergence zone path,

reaching th-. surface (actually, the depth of maximum sound speed near the

surface) at a horizontal range equal to half the radius of the first convergence

zone. All rays which leave the source at angles above the horiz.ntal will

have vertex velocities larger than that of the horizontal ray and will therefore

reach the surface at finite angles of incidence. Furthermore, all rays which

leave the source at downward angles between the horizontal and the limiting

ray at the bottom will also be refracted upward and will reach the surface

at finite angles of incidence. A family of such rays is shown in the sketch

b- -ow. We see therefore that when the ocean is deep enough to provide

convergence zone propagation, solid coverage of the surface out to hori-

zontal ranges in excess of one-half a convergence zone radius can be

obtained by placing the source at the critical depth defined above. (Actually,

as a practical operational measure the source should be placed a little deeper

to prcvide a margir of safety. % This path has been given the name reliable

acoustic path and ie usually designated by the initials RAP.
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In addition t. providing solid coverage of the surface the RAP

has the advantage of providing a certain amount of ray convergence. TheL

maximum convergence gain occurs for those rays which leave the source

in the vicinity of the horizontal. Calculations based on typical conditions

in the Atlantic Ocean show a gain of about 5 db. As the initial angle

increases above the horizontal the convergence gain decreases and the

spreading loss approaches the spherical type. The reduction of gain in this

region is of little importance, however, since the overall propagation loss

decreases rapidly because of the reduction in range. In the case of the

downward-going rays, on the other hand, the reduction in convergence gain

combines with the increase in range to cause a rapid increase in overall

propagation loss. Therefore, although RAP ranges in excess of 25 miles

may exist in very deep water, the requirements for implementing them

become very severe.

The reliable acoustic path is sometimes spoken of as being

half of a convergence zone. This statement is misleading for two reasons.

The first has already been discussed. Unlike the convergence zone path

the RAP provides solid coverage of the surface out to ranges in excess of

half a convergence zone, the theoretical limit depending upon the depth

excess. The second reason is also a significant one. In areas of insufficient

water depth the convergence zone path ceases to exist and a convergence

zone sonar becomes utterly useless (except for the small area of conventional

direct coverage). This is not true fc'r the RAP. Although the extent of the

surface coverage is considerably reduced under such conditions, substantial

performance is still obtainable.

When the water depth is insufficient for convergence zone

operation, that is, when the sound speed at the bottom is less than the

maximum value near the surface, the sound source should be placed as clcse

as practicable to the bottom. A rough velocity profile and ray diagram
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illustrating the case under discussion is shown in the sketch below. The

4S.

L1
CB-

sound speed at the bottom is c B and the maximum value in the surface region

is cM. The extent of the deep sound channel is determined by the vertical

dotted line running from the bottom to the depth yc" A ray leaving the source

horizontally at the bottom will vertex at the depth yc at a horizontal range

determined by the velocity profile. At depths shallower than yc at this range

there will be a shadow zone. A ray which leaves the source at a slight

upward angle will vertex at a slightly shallower depth and a somewhat

shorter horizontal range. Thus as the horizontal range decreases the shadow

zone becomes shallower until the limiting ray ro the surface is reached. The

initial angle of the limiting ray is

0 0 L  cos

All rays leaving the source at angles above OL will strike the surface.

Hence solid coverage of the surface is provided at all ranges out to the point

of tangency of the limiting ray.

In regions where the depth is greater than about 5000 or 6000

feet, the value of OL is determined chiefly by the relative values of the water

depth and surface temperature, as indicated previously. In shallower water

the situation becomes more variable. However, in most ocean areas the

limiting angle is less than 10 to 15 degrees For efficient use of a
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vertically directional sound source in areas of insufficient water depth it

is necessary to steer the beam upward at an angle sufficier..t to insure that

most of the radiated acoustic energy is directed into the region of surface

coverage.

The reliable acoustic path, while extremely attractive from an

acoustic point of view, has two obvious disadvantages. First, there is the

technical problem of designing equipment to operate at great depths and of

supplying power to it. Seccndly, if the path is to be considered for applica-

tion to mobile systems, there is the operational problem of lowering trans-

ducers to such depths and, if necessary, of retrieving them.

6. Refracted Surface-Reflected (RSR) Path

The .'erm refracted surface-reflected path is used to describe

those propagation paths which involve a sequence of cycles of refraction in

the deep ocean and reflection at the surface. It is evident that to a limited

extent paths of thIs type are included in convergence zone propagation. The

present discussion will be limited to a consideration of the RSR path as an

extension of the RAP.

A necessary condition for RSR propagation to occur is the

I existence of a substantial depth excess. Let us assume this condition to be

met and let the source be placed at a depth slightly below the bottom of the

deep sound channel (i. e., slightly below the minimum depth for convergence

zone propagation). Let the sound speed be c o at the source and cB at the

ocean bottom. The cosine of the initial angle of the bottom limiting ray is

cos @L-
j CB

( All rays which leave the source at downward angles between 0 and @L will

be refracted to the surface without striking the bottom. After reflection

from the surface they will return downward and be refracted again,

continuing the process in repeated cycles with about the same range incre-

ment as convergence zones. Those rays which leave the source at upward
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angles between 0 and @L will travel to the surface, be reflected, and

proceed in similar RSR cycles. Rays which leave the source at downward

angles greater than eL will strike the bottom directly and rays which leave

the source at upward angles in excess of eL will strike the bottom after a

surface reflection. The RSR propagation in this case is therefore limited

to those rays having initial angles between ± GL .

We see that at the first surface reflection the surface coverage

consists of an annulus whose width extends from the horizontal range of the

+ eL ray to the horizontal range of the - eL ray. Since the distance traveled

per refraction cycle is substantially the sane for all rays in this group, the

annuli of the zones at the second, third, etc. reflections will have roughly

the same width as the first. It is also clear that the zone width we are talking

about depends strongly upon the depth excess. However, a relatively

moderate depth excess will give substantially broader coverage than can

be obtained with convergence zone propagation. For example, under typical

Atlantic Ocean conditions depth excess values of about 1000, 1750, and

4000 feet will provide zone widths equal to 1/4, 1/3, and 1/2, respectively,

of the spacing between successive zones.

Obviously a price must be paid to achieve such broad coverage

as compared to convergence zones, and the price is the absence of the high

convergence gain. The requirements placed on eqaipment for implementing

such a long-range path would be very severe.

7 f4
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TECHNOLOGY OF UNDERWATER SOUND
REVISED NOTES

TRANSDUCERS

A transducer may be defined in general as an element in an energy

transmission system, which connects one portion of the system - the

source - to a second portion the load. According to this general definition

it is not necessary that a transducer convert energy from one form to another.

However, in these notes we shall be concerned w-th transducers in which such

a conversion takes place. For transmitting acoustic signals in the water we

are interested in converting electrical energy into acoustic energy, and for

receiving acoustic signals from the water %e are interested in the reverse

process.

A transducer which converts electrical energy into acoustic energy, oz

vice versa, is called an electroacoustic transducer. An electroacoustic trans-

ducer which is used to transmit sound waves into the water is called a sonar

projector. An electroacoustic transducer which is used to receive sound

waves from the water is called a hydrophone. Many transducers can be used

interchangeably for both purposes; these will be referred to simply as sonar

transducers. It should be noted, however, that the word transducer is some-

times used in a restricted sense to designate only a projector, as distinguished

from a hydrophone.

A. The Nature of Sonar .,Transduc ers

1. Introduction

Because the specific acous -z impedance of water is several

orders of magnitude larger than that of air, the conventional techniques

employed in the design of air-audio equipment (microphones and loudspeakers)

are not applicable to sonare Since air is a very light substance, the driving

mechanism must produze a large displacement with very little force, in

undierwater sound, on the other hand, it is necessary to apply a very large
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force to generate even a small displacement. In other words, a scnar trans-

ducer must have a large mechanical impedance.

Among the physical phenomena which are capable of fulfilling

this requirement, two are widely used. These are ele.trostriction and

magneto striction.

a. Electrostriction. In 1880 Jacques and Pierre Curie

discovered that when certain crystals such as quartz, tourmaline, and

Rochelle salt, are subjected to pressure, electric charges of opposite sign

appear on opposite faces, thus producing a potential difference. Conversely,

when a potential difference is applied to opposite faces, a change in physical

dimensions occurs. Such a crystal is called a piezoelectric crystal, and trans

ducers made from such crystals are called piezoelectric transducers.

There are other materials such as barium titanate,

which, though not electrostrictive in their natural condition, can be made so

if they are subjected to a strong electric field under suitable conditions. Such

materials are said to be polarized.

b. Magnetostriction. When certain materials such as nickel

are placed in a magnetic field, they undergo a change in physical dimensio-s.

Therefore, when a properly designed nickel element is subjected to an oscillating

magnetic field, a mechanical oscillation is produced which is capable of

generating acoustic waves in the water.

Also, the converse process takes place. When a piece I
of magnetostrictive material is subjected to a physical pressure, a magnetic

field is generated, and this can be detected electrically. The phenomenon of

magnetostriction has been known for over a century.

The design of a piezoelectric or magnetostrictive trans-

ducer consists .'i the application of the appropriate oscillating electric or

magnetic driving force to the mechanical vibiating element, one face of which

is coupled to the water. In the case of crystals which are soluble in water
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the coupling is accomplished by means of an intermediate liquid such as

castor oil, which has a specific acoustic impedance approximately equal to

that of water and which is encased within ar tcoustically transparent membrane.

The other face of the vibrating element is either attached to a heavy mass

backing, or' else is backed up by pressure-release material which allows the

face to vibrate freely without transmitting any appi.eciable acoustic radiation.

(Ideally the element should term-mate in z vacuum.)

Fo- maximum efficiency the vibrating element should

operate at the resonant frequency. This can be done with transducers which

are designed to operate at a fixed single irequency. Transducers which trans-

mit or receive over a broad band of frequencies must operate well away from

the resonant point. Most sonobuoy hydrophones, for example, must have a

flat response over a very wide range of frequencies.

No attempt will be made in these notes to give a complete

description of the theory and design of sonar transducers. The scope will be

limited to a discussion of the basic concepts together with a rather over-

simplified presentation of the theory of operation. The operation of a sonar

transducer is most conveniently described in terms of its equivalent electric

circuit, in which the mechanical effects are represented in terms of their

equivalent electrical characteristics as seen looking into the electrical input

terminals. As an introduction to this discussion we shall first consider the

mechanical impedance of a simple vibrating system and shall then discuss the

effect of the radiation load, that is, of the power transmitted into the water as

acoustic radiation.

2. Mechanical Impedance

Consider the mechanical system shown in the sketch below. A

mass M is supported by a spring from a rigid support. The mass is driven

by a sinusoidally oscillating force F ejWt, causing it to oscillate in a vertical

direction. The mass is also attached to a piston in a dashpot which produces

a retarding force proportionOl to the velocity. Let be the displacement of

*w angular frequency = 2,f

195

WY



FoRR I c;CA P A I' I i

RES I STFA ",-E-

t " DA5'I PoT

M F-CH AN I CA. 5'[ M EL--CMIRICA , S'Y ST'EI!

the mass from its static equilibrium position, and let u be the velocity, I
that is,

d

dt

The following forces act on the mass m:

Externaily applied driving force F e jwt "

Tension i- the spring = - s

Resistance of the dashpot = - Rm§

where s and Rm are constants. According to Newton's Second Law, we

see that

FeJwt . s§ - Rm§ = M

or M § + Rmt + s = Fejwt / (601)

Let us assume a steady-state solution of the form

Aejwt (602)
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The complex constant A is evaluated by substituting (602) into the differen.tial

equation (601).

A jwR F (603)

We are particularly interested in the velocity, u, which is

du jwAeJ",vt

If we write u in terms of its complex amplitude "3 , that is,

u = [ejwt (604)

we find the relation between trand F to be

F=.) F (605)

Rm+j (wM - s)
w

In the preceding illustration a simple series RLC electrical

circuit is shown at the right of the mechanical diagram. If the alternating emf

applied to the circuit is

e = Eejwt

and the alternating current flowing in the circuit is

i = IeJ w t

where I is the complex amplitude of the current, the relation between I and E

is
EE= (606)

R +j (wL - I- )

where R, L, and C are the resistance, inductance, and capacitance of the

circuit. According to standard A. C. electrical theory, the denomicator of

(606) is the complex impedance'z of the circuit and is expressed in terms of

the resistance and the reactance,

F=R+j X (607)

where, for this series circuit

X wL-- (607a)
WC
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By analogy we may define a complex mechanical impedance

-m = Rm + j Xm  (608)

where

Xm = wM-- (609)

The analogy-between the mechanical and electrical circuits is shown in the

following table:

Mechanical Electrical

Applied force, Fejwt Applied EMF, E ejwt

Velocity, UeJwt Current, Iejwt

Damping constant, Rm Resistance R

Mass, M Inductance, L

Stiffne ss coefficient, s patnc'

Capacitance G

Complex mechanical impedance, 'Fm Complex impedance,

Z In 1MI z = i -I

wM Inductive reactance, wL

K1 In Capacitance reactance"

In a sonar transducer the velocity u =.ejwt is the velocity of

the radiating surface. The complex mechanical impedance-m is the ratio of

the complex driving force to the complex velocity. The magnitude of this

impedance

Zm = Im =Rm + Xm

- is the ratio of the rms force to the rms velocity.

From this discussion it is clear that the inertia of the moving

parts of an electroacoustic transducer will appear as an inductance in the

equivalent circuit; friction in the moving parts, or any other process (such as

hysteresis in magnetic materials) which dissipates mechanical energy, will

appear as a-resistance; and elastic properties of materials will appear inversely
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as a capacitance. As a matter of fact, when electrical impedance measure-

ments are made on a transducer, these effects are actually observed, the

equivalent resistance, inductance, and capacitance being proportional to the

corresponding mechanical quantities. We shall investigate these relationships

for a piezoelectric transducer in a later section.

3. Radiation Impedance

In the preceding section we discussed the vibration of a mechanical

system without any reference to the radiation of acoustic waves. That discus-

sion may be considered as applying to a transducer operating in a vacuum.

When the transduccr is operating in its normal environment, the reaction of the

water against the radiatirng surface imposes a load on the vibrating element,

thereby altering the mechanical impedance of the system. Even without any

mathematical analysis it is intuitively apparent that the radiation of acoustic

power should give rise to a load which includes a resistance, since no power

is dissipated in a pure reactance.

To obtain a little better insight into this problem, let us temporarily

assume that the radiating surface is flat arn has an area S. Let us assume

further that the dimensions of the surface are large compared with the wave-

length of the acoustic waves in the water. Under these assumptions the waves

in the immediate vicinity of the radiating surface are essentially plane waves

whose specific acoustic impedance is pc, where p and c refer to the density

and sound speed of the water. As we have seen earlier, the specific acoustic

impedance is the ratio of the acoustic pressure to the particle velocity (of

plane waves).

Now, since the water is assumed to be in contact with the radiating

surface, and since by our assumption that the acoustic waves are essentially

planar', it follows that the particle velocity of the water in the immediate

vicinity of the radiating surface is the same as the velocity of the surface

itself. Furthermore, the acoustic pressure of the water must equal the

pressure exerted by the radiating surface, and hence the total force is equal
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to the pressure times the area. If F represents the amplitude of the force

exerted by the transducer on the water, and U denotes the amplitude of the

velocity, then we see that

F p c SU

and the radiation impedance is

Zr= pcS (610)

The force F is the force required to move the water and is in

addition to the internal force required to drive the transducer mechanism.

The overall mechanical impedance of the systei . consists of the combination

of 41e internal impedance and the radiation impedance. It should be noted that

the above definition of radiation impedance (i. e., as the ratio of the force to

the particle velocity) is identical with the definition of mechanical impedance

presented earlier, in the discussion of three-dimensional acoustic waves.

Under the preceding ideal assumptions - large flat surface -

the radiation impedance is found to be a pure resistance. The analysis ot

more practical examples, where the dimensions of the radiating surface are

of the same order of magnitude as a wavelength, is in general very complicated

j and will not be included in these notes. It is found in general that edge effects

contribute an out-of-phase component represented by ar inductive reactance.

The radiation impedance is of the form

wr pcS (rl +j x l ) (611)

where r 1 and Xl are dimensionless parameters representing the relative

magnitudes of the resistive and reactive components. For example, for the

case of a circular piston mounted in an infinite'baffle, * the parameters ri

and x I are functiens of the product ka, where a is the radius of the circular

*That is flush-mounted in an infinite rigid plane wall, with the acoustic radiation

confined to the space on one side of the wall.
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piston'Jace and k is the wave number, 27r/k. These functions are plotted on

the accompanying graph. For small values of ka (less than about 0. 7), xl

varies linearly and is the dominant term. As ka increases, xl reaches a

maximum value of about 0. 7 in the vicinity of ka = 1. 5, and then gradually

decreases in a series of damped oscillations toward zero. The resistive

parameter r I increases at first as the square of ka. It reaches a maximum

value of about 1. 1 and then gradiially approaches the value 1 in a series of

damped oscillations. The behavior of r I and x, at large values of ka agrees

with the :esults of our intuitive discussion which led to a pure resistance

with rl I and x I 0.

Another interesting example is the case of a pulsating sphere

which generates pmnidirectional spherical waves. In our earlier analysis

of spherical waves, we found that the acoustic preesure of a spherical wave

is out of phase with the particle velocity, leading to a complex unit-a-ea

acoustic impedance. PC

Zac kr (612)
+ k ? rZ +1 + r ?

If these waves are generated by a pulsating sphere whose mean radius is a,

then the mechanical impedance per unit area of the spherical radiating surface

is given by (612) with r = a, and the overall mechanical impedance is given by

(611) with

S 47 a?

C r1 k a? (613a)
1 +1 + r2 a2

1

X a - ka (613b)
+ +k- 1 +k a z

These functions are plotted as dashed curves on the accompanying graph. A

comparison of the two sets of curves shows a quite similar behavior for both
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the circular piston and-the sphere. Although only relatively few types of

radiating surface have been anairzed, owing to mathematical difficulties,
it ig generally true that when the dimensions of the surface are large compared

with the wavelength, the impedance is predominantly resistive with r 1  -,

whereas when the dimensions are small compared with a wavelength, th.:

impedance is largely reactive. The reactanca is inductive, indicating that

an inertia effect is present, an out-of-phase component in which mass is

being moved without a corresponding generation of radiation.

4. Piezoelectric Transducers

The following discussion will present a somewhat over-

simplified theory of one type of quartz crystal transducer, the purpose being

merely to present some of the general concepts of piezoelectric transducers.

In general, when a piezoelectric crystal is subjected to an electric field it

experiences both compressional and shear strains whose values depend upon

the way in which the crystal is ca:t and the direction in which the field is

applied. We shall consider only the compressional strains.

a. The Piezoelectric Effect in a Quar'tz Crystal

We assume the crystal to be cut in rectangular form with

sides of lengths x, t-y, andtz, as shown in the sketch

L ID
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The two faces normal to the x axis are plated with conducting rilaterial

(indicated oy the shading). When a voltage is applied across these faces, the

crystal suffers a change in length in the y-direction. Conversely, if a force

is applied in the y-direction, electric charges of opposite polarity are produced

on the plated faces in the x-direction. The behavior of the crystal in the

presence of both an electric potential in the x-direction and a force in the

y-direction is expressed approximately by the following two equations:

LL 0 E d,~F(614)

F dlZE

=Y s + (615)ay hS X
where

o charge density (charge per unit area)

on the plated faces

e ="free" dielectric constant of the crystal in

the x-direction, i.e., the dielectric constant measured when no external

force is applied

= 8.85 x 10"Z farad/neter

= permittivity of free space

E = potential difference in volts, applied in the

x-direction }
F = applied compressional force in the y-direction
S = t x t z = area of face normal to y-direction

"412 = one of the piezoelectric strain coefficients of the

quartz crystal, measured in meters/volt or cm olt, depending on the units

used. m v o o

il = change in length of the y-dimension ty;e &e to the

electrical and mechanical stresses applied

= longitudinal strain, i. e.. fractional change in length
y
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yy Young's modulus of elasticity, measured in the

y-direction.

Before we proceed with the analysis, a few words of
explanation of equations (614) and (615) may be helpful. Assumne for the

moment that no external force is applied, i. e. , F = 0. In this case equation

(614) is the classical relation between the applied potential and the chazge on

the face of the capacito . The charge is equal to the product of the charge

density and the area of the face.

Q = CTS G

and the capacitance is the ratio of the charge to the potential difference,

i.e.,
_ Q 6CoS

This is the standard formula for the capacitance of a parallel plate capacitor.

If now a force F in the y-direction is applied instead

of the voltage, a charg? appears on the plates, whose magnitude depends upon

the value of the piezoelectric strain coefficient d,,. This is called the

direct piezoeleztric effect. If both tTic voltage and the force are applied, the

resultant charge density is given by (614).

Considering now (615), we see that the first term is

simply the classical expression for Hooke's Law in the form

StressStrain =Se
Modulus

The second term states that when an electric voltage is applied in the

x-direction, it generates a strain in the y-direction whose value depends on

the strain coefficient d1 Z. This is called the inverse piezoelectric effect.

In summary, the ordinary elastic properties of the

quartz crystal are represented by the first term of (615). When two opposite

faces are plated, the crystal acts as an ordinary parallel plate capacitor, as

indicated by the first term of (614). In addition to the above, the piezoelectric
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properties of the crystal are expressed by the second terms of bcth (614)

and (615).

It will be convenient to express a in terms of the

voltage and strain by eliminating F between (614) and (615). The result is

C' o E o_ (616)
x Yy dlY

where Yy di

= - Yyd(617)
CO

The quantity e' is called the clamped dielectric constant. It is the value which

would be measured if the crystal could be clamped in such a way as to keep {y

constant, i.e., 6r y 0.

b. Quartz Crystal as a Quarter-Wave Oscillator

To illustrate the behavioi of a piezoelectric trans -

ducer, let us assume that one end of the crystal - one of the faces normal

to the y-axis - is rigidly clamped to a heavy mass, so that it cannot move,

and that the other end is in contact with the water (either directly or through

some intermediaLe fluid having the same specific acoustic impedance). We

shall also assume that the dimensions of the radiating surface are sufficiently

large relative to the wavelength that the radiation impedance is purely

resistive and has the value pcS, where p and c are the density and sound speed

of the water, and S is the area of the surface.

If an alternating voltage Eejwt is applied across the

plated surfaces (normal to the x-axis), it will set up a mechanical oscillation

in the y-direction, which can be expressed as a standing wave consisting of

one wave traveling in the positive y-direction and a second wave traveling in

the negative y-direction. The displacement ijof the crystal material can then

'be expressed mathematically as a function of the y coordinat, and of time by

the following 
equation

(Ae-j + BeJk Y Y) ejwt (618)
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where A and B are constant coefficients to be evaluated, and k is the wave

number of the wave in the material o

1y =7z. w (619)

The sound speed cy along the y-direction in the crystal is related to the

density pm of the material and the modulus of elasticity Yy in the same

manner as the sound speed in water (equation (5)), namely

Cy = M (620)

In accordance with our assumptions, the boundary conditions for the evaluation

of A and B are:

At y =0 (clamped end): , 0

At y = -ty (radiating end): Mechanical Impedance = pcS

Substitution of the first condition into (618) yields

so that

L = -A (e kyy e -jkyy e j-Vt

or

= - 2jA sin kyy ejwt (621)

If we denote by Fejwt the force exerted by the water cn the radiating face

(which, of course, is equal and opposite to the force exerted by the crystal

on the water), the second condition yields

Fej w t pcS -i'4t I =  y

-cS (-2j A sin kvv)j wejWt

so that A is found to be

F

A = 2 wpcS sin ky Zy
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and the disp.acement is
LjF sinky yt

wpc S sin ky y eW (623) K
The force F is related to the applied voltage E by the

piezoelectric equation (615), evaluated at y = ty. The strain is

-~~~~ jkFokjyewt
21Y y -4y wpc S sin ky y

The force and applied voltage are, as previously stated, FeJ w t and EeJWt

Substitution into (615) and cancellation of the factor eJwt yields

j k F cos k y F d 1 2 E

wpc Ssin k 'y Y + t

or k y cos k d12 E
F Y y ~y)

YyS wpc sin k y e-

But from (619),
~ky

w cy

and from (620',

Therefore F solves to
,, d12 Yy S

I-j pE-.c Y cot(k -ty)
pc Y

The factor which we shall denote by the symbol @, is called the

transformatior factor, It is measured in dynes/volt in the cgs system and in

, newtons/volt in the M':S system. Thus,
>,,} d12 Yy S

d12 '= d12 Yy tz (624)

and F = (625)
1- j e:3 ~x cot ky

pC
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Substitution of (625) into (623) yields for the di.placement -q,

j 4 E sinky y. evJt (
S=  wsinky y(pcS - j Pm Cy S cot ky 4 y) (626)

The velocity of the radiating surface (which is equal to the particle velocity

of the water adjacent to the surface) is

6 l cE eJwt
SSt y=t PcS-j Pm cyS cot kyy

If U denotes the complex amplitude of tt, so that

u ="ejwt (627)

we obtain the relation

pcUp cSokf (628)
PCs - j Pm CyyS cot kyy

Here we see that the numerator 4E has the dimensions of a

force, and that this applied force generates a velocity Ur of the transducer

surface. The denominator of (628) thus represents the effective mechanical

impedance of the system.

zm pcS -Pm cy S cot k 0y(629)

The form of equation (628) is the same as that of a series resonant electrical

circuit. The "mechanical circuit" consists of a r:.chanical resistance pcS

in series with a mechanical reactance - Pm cy S cot ky ty. The absolute

value of the current amplitude is

T = [(pcS)z + (pm cy S cot k. (630)

Recalling that the wave number k i3 a function of the cequency, that is.

y cy C.y

we see that the reactance term containing cc I-ty will vary as the frequency

is varied. Clearly the crystal will resonate at those frequencies for which

cot ky y 0, that is, for which'~ ky 2 n-I
- -- T n 21, , 3, ... (6311
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The fundamental mode occurs for n = 1. In this case

k zT't- v (631-)ky ,y -X =2-

y

or

YT 4 Y_ 632)

Thus, a crystal which is rigidly clamped at one end will resonate when its

length is one quarter of the wav length of the longitudinal waves in the crysta.

material.

fLet us now investigate the behavior of the impedance as a

function of the frequensy. Consider first the case of very low frequencies,

far below resona,-e, where ky _ty is very small. In this case

co y ,y ;:- I, sin ky yvky t, an ot y yk ---
y y

and the mechanical impedance (629) becomes approximately

Pm cy S
;r'P cS - j P M'

which may be transformed with the aid of (619) and (620) to the following
z i Yy s

zm pcS +jwy (633)

This is an impedance consisting of a series combination of iesistance and

capacitance, that is, of the form R T-

[ o4

The-res tance term is the radiation resistance pcS. The factor Yy S/1y in the

reactance term is the mechanical analog of the reciprocal of the capacitance

and, as we have seen previously, should correspond to the stiffness

coefficient of a spring. As a matter of fact, it does represent thp stiffness

coefficient of the crystal in the y-direction. If a static compressional force

F is applied in this direction across the crystal, it will cause the length Cy to

decrease by an amount ,1 such tbat, according to Hooke's Law,
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F
y

y
YyS

F -7 1 (634)

Thus at low frequencies the crystal behaves essentially as a damped massless

spring, the damping being caused by the acoustic radiation load.

Consider now the behavior of the crystal in the vicinity of

the fundamental resonant frequency, that is, where ky ty is approximately

it/2 radians. According to our basic assumption the resistance term of the

mechanical impedance is independent of frequency and retains its value of

pcS. The reactance term, being proportional to cot ky Py' is zero atIT
ky iy 2 - Because of the minus sign in front, it is negative at lower

frequencies and positive at higher. This is similar to the behavior of the

reactance of a series combination of inductance and capacitance,

Xm  wL m  (635)

Plots of the cotangent and the series LC reactance are shown in the diagram

below. The best fit in the vicinity of the resonance frequency is obtained by

CO+ Y

I I
r

a,[ '
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matching the slopes of the two curves at that point. The derivative of the%

reactive component of (629) with respect to w is

dw - Pm Cy S +{cot ky i)

Upon substitution of (619), the derivative is seen to be

dXm - Pm y S

dw sin? kyLy

At the resonant frequency, w o , where k ty this becomes

dXm y (637)"d-w 1 P m 4YS(6)
w o

The derivative of (635) is
dXmI

dw - L m + wC m (637)

Resonance occurs at the frequency at which the inductive reactance and

capacitative reactance are equal. The resonant frequency is

1

W0  - (638)

Substitution of (638) into (637) to eliminate Cm yields

diXmWo
dw = Lm(1 + ) (637a)

which, at the resonant frequency (w = wo), is
dXm]
dwA 2 Lm (639)

If the slopes of the two curves are to be equal, (636) and (639) must be equal.

Hence

Lm = Pm yS- m (640)

From our previous discussion of mechanical inductance, we shot'la expect Lm

to be a mass, as indeed it is. The product 4'y S is the volume of the crystal,

and Pm ty S is its mass. 4Thus Lm is the effective mass, xn, of the crystal,

which is equal to one-halitthe actual mass.
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The reciprocal of the mechanical capacitance, which

represents the effective stiffness of the crystal, is obtained from (638)

Cm = Wo m =woZ Pm -ty S

This expression may be transformed by application of (619) and (620). Since

kyty = at the resonant frequency, we see that

wo? ky 2 cy2  Y c
4 pm ' yT

Hence

I _r 2 Y S
Cm 8s (641)

where s denotes the effective stiffness. It will be noted that the effective
w2

stiffness at resonance is slightly larger, by a factor of , than the static

s tiffne ss.

We see that in the vicinity of the fundamental resonance

frequency the mechanical impedance has the characteristics analogous to a

series resonant electrical circuit, the equation being

Zm Rr + j(wm -) (642)
w

where
Tw eeR

r  = pcS =radiation resistance (643)

M Xz Pm y S =effective mass (640)

7r = effective stiffness (641)

At frequencies below resonance the stiffness term in the reactance is dominant

and the velocity of the radiating surface leads the applied voltage in phase. At

frequencies above resonance the mass term ;-s doninant and the velocity lags
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the voltage. At resonance the two terms cancel and the velocity is in-phase

with the voltage, the relation (628) being in this case

TJ = bE '" (at resonance) (628a)
pcS (2a

A further comment is in order regarding the significance of

the transformration factor which appears in equation (628). The oscillations

of the crystal are actually driven by the applied voltage Eejwt which acts

through the piezoelectric properties of the crystal to produce the velocity

UeJwt. Equation (628) states that the effect of the electric driving

potential is equivalent to a mechanical driving force EeJwt. The piezoelectric

transducer may thus be visualized as a sort of "transformer': between the

electrical and mechanical systems, the "turns ratio" (secondary primary)

being the reciprocal of the transiormation factor,

In summary, our analysis has shown that when a quartz

crystal is rigidly clamped at one end and is driven by an alternating voltage.

it acts as a quarter-wave resonator, the ia.echanical system being analogous

to a series-resonant A. C. electrical circuit. The analysis has been somewhat

oversimplified, neglecting all secondary effects and making the assumption of

n ideal infinite mass backing. The purpose has been to emphasize the basic

concepts involved, rather than to discuss the details of hardware design.

Also, this is only one of several types of transducer configurations. For

example, instead of backing the crystal with a heavy mass, it is possible

to design an efficient radiator by allowing the hack end to vibrate freely in

(ideally) a vacuum, A bar which vibrates at both ends will have a node in

the center (or in the vicinity of the center if one end is loaded), apd this node

is equivalent to backing the front portion with an infinite mass. It is impossible,

of course, to terminate the free end in a vacuum, but air is practically equivalent

to a vacuum because of its low specific acoustic impedance relative to that of

water. It is beyond the scope of these notes, however, to analyze other

designs, since they differ more in engineering details than in basic principles,
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c. Egu!valent Circuit of Quarter-Wave Quartz Oscillator

To obtain the equivalent circuit of the piezoelectric

oscillator we must compute the current

i = Iejwt

which flows when the voltage Eejwt is applied across the plated surfaces

normal to the x-axis. The impedance of the equivalent circuit is then

*I-

or, expressed in another way, the admittance of the equivalent circuit is

1 I
y = -= (644a)

By examining the mathematical form of F-(or'-), we shall be able to recog-

nize the combination of circuit elements which comprise the equivalent

circuit.

In this analysis we shall consider only the crystal itself,

as though the power source were connected directly across the plates. A

complete transducer will of course have other electrical elements coupling

the power source to the oscillator, and the complete equivalent circuit will

include all of these components in addition to the equivalent circuit of the

oscillator itself. A convenient starting point for the analysis is equation

(616), which relates the charge density appearing on the plates to the applied

voltage and to the strain .v . The charge densiLy is the charge per unit

area, so that to obtain the total charge we niust integrate a over the face.

Thus -,y tz

q- Sf f G dydz (645)
0 0

The current is the time derivative of the charge

dq
A- dq -(646)

1dt
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The strain is found by taking the derivative of (626) with

respect to y. When this is done, the charge density is found to be

- YLyc

LT CmS

The first term is a constant and the second is a funct-on only of y. The

charge is therefore

Integration plus substitution of (624) yields

14W(CJ50~ 
(647)

and the current is

S - -"- I- (648)

Here we see that the admittance of the equivalent circuit is of the fo-m 4

JwC o + RR + XM (649)

where
o Lo ty tz

CO0 ' (650)

R(651)

XMS- c5 1s¢ot kv y (652)

Ik
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This is the admittance of a parallel circuit having a capacitance Co in one

branch and a series combination of a resistance R and an inductance X in the

other. The formula for Co is similar to what wc observed earlier for the

capacitance of the quartz crystal, the only difference being that it contains the

clamped dielectric constant e' instead of the free dielectric constant E. Co is

therefore the capacitance which would be measured if the crystal wera rigidly

clamped so that its dimeiusions could not be changed. It will be noted that tl-is

is a real electrical property of the crystal, as contrasted with RR and XM. which

represent the effect on the electrical circuit of mechanical properties.

Comparison of the resistance RR (651) and the reactance

XM (652) with the corresponding components of the mechanical impedance

(629), that is,

zm = Rr-+j Xm (629a)

where Rr pcS (radiation resistance) 643)

Xr = pmcy S cot ky 4ty (653)

shows that

RR = Rr (654)

Xrn
XM p -(655)

(The small letter m denotes the mechanical component; the large letter M
denotes the electrical equivalent; and the subscripts r and R refer to the

radiation resistance. ) Furthermore, we have seen that at frequencies in

t-;e vicinity of the fundamental resonance point the mechanical reactance

can be expressed approximately as the sum of reacLive components
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S
Xm - wm - (66)

WU

efffe- (640
wheie m 1 ty S mass of crystal (640)whele~ Y -A pm =

.Tr YyS
and s = dinamic stiffness coefficient (64!)

The electrical reactance of the equivalent circuit likewise consists of an

inductance LM and a capacitance CM in series, such that

m
LM =T (657)

I s- (658)

The electrical equivalent circuit for the vibrator operating
near resonance is as shown in the following diagram.

LM

The same information may be presented in another form, using the previously

mentioned concept of a hypothetical transformer with a "turns ratio" 1/.

Y4) /S ;Yrl"

21'I
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It must be stressed that the concept of the transformer is symbolic in that th

turns ratio is not a pure ratio but rather a dimensional factor relating

mechanical to electrical quantities.

Two factors, present in a real crystal but neglected in

the preceding discussion, are friction losses in the crystal vibration and

dielectric losses in the crysta' as a capacitor. If these are included, the

eq'pivalent circuit looks as follows.

R- _

The leakage resistance Ro is shunted across the crystal capacitance CO, and

the friction loss resistance RM is in series with the radiation load resistance

RR.

Another practical problem encountered in the real world

is the fact that the dimensions of a single crystal are seldom iarge enough

relative to a wavelength to provide a resistive load. As we have seen, the

rad.iation load of a small radiating surface has a large reactive component.

To overcome this difficulty, a number of vibrators are mounted side-byo

side, forming an extended array, and are driven in phase, (The size of

the array is also important from a consideration of transde)cer directiviy,

as we shall see later 
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d. Coefficient of Mechanical Coupling

The ratio of the capacitance CM in the motional branch

of the equivalent circuit to tue ordinary capacitance Co of the crystal is a g

measure of the amount of coupling between the electrical and mechanical

systems of the transducer. Obviously, any material for which this ratio is

f large will have a strong piezoelectric effect. From (650), (64-1), and (658)

this ratio is found to be

Co  WZ Y y S e o _yz

or, since

* = dlZ Yy -, (624)

and

., . (1 - y) (617)

the ratio is

SCM _8 C Co

-= - ?(659)Co dlz Y Y

The uantty d 2 Y y

The quantity ~is independent of the dimensions of the crystal; it is

characteristic of the nature of the crystal material. It is a dimensionless

quantity, called the coefficient of electrdrtiechanical coupling. We shall

denote it by the symbol kZ.rY

k = dlz (660)

The capacitance ratio is thus

CM 8k? (659a)
Z -o i (I k-)

The value of k for quar, in 0. 1 and for barium titanate is 0. 14.
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e. The Quality Factor Q

The quality factor Q is a dimensionless ratio which is

commonly used as a measure of the shaipness of resonance of an oscIllating

system. For a series resonant electrical system at its resonant frequency,

Q is defined as

Q = Energy Stored in Inductance L (661)
Energy Dissipated in Resistance R per cycle

In a resonant A. C. circuit the energy oscillates between the inductor and the

capacitor, When the current is a maximum, the energy is stored in the

magnetic field of the inductor. When the current drops to zero, the maxirnum,

charge appears across the pdates of the capacitor, and the energy is stored in

the electric field of the capacitor. Under steady state conditions these two

amounts of energy are equal. Furthermore, the smaller the loss of energy

in the resistance, the sharper will be the resonance. It is readily shcwn

(see equation (680)) that for a series RLC circuit, (66!) may be expressed in

either of the following two forms

wL 1662)
R woCR

In a mechanical system the kinetic energy of the mass

corresponds to the magnetic energy of the inductor, and the potential energy

of the elastic material corresponds to the electrostatic energy of the capacitor.

In describing sonar transducers it is customary to define

two Q's, the mechanical QM and the electrical QE. QM is the Q of the

mechanical system, and ts value for the piezoelectric oscillator above is

wo LM wom
0 0 (663)

QM RR R+ R M  -Rr + Rm(6)

where Rr and RR are the radiation resistance. kmechanical and electrica.'

equivalent) and Rm and RM represent the loss in the crystal. Although a

system with a large QM is an efficient oscillator at its resonant frequency,

it has a narrow bandwidth. In fact, it is readily shown that for a series
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resonant circuit the bandwidth Aw between the 3 db-down points on either

side of the resonant frequency is
[ wo

Aw ~

In cperational sonars, even for single-frequency pulses, there is a require-

ment for a significantly wide bandwidth to accommodate doppler shifts of the

echo. Also, because of signal processing considerations, many modern

sonars transmit pulses having an appreciable bandwidth. Reasonable values

ior the QM of a sonar projector are in the range from 5 to pe:rhaps 10.

In the equivalent circuit of a piezoelectric transducer

operating in water, the shunting capacitance Co has a far greater admittance

than the motional (mechanical) branch. As the frequency ir varied from

below to above resonance, the mechanical branch produces only a relatively

small wiggle in the overall admittance curve. For this reason the electriczal

QE cannot be interpreted in :he ordinary context of sharpness of resonance.

At the resonant frequency the equivalent circuit consists of the capacitance

k- Co in parallel with the radiation and frictional resistance RR + RM. The QE

of this lossy capacitor is to be interpreted in the context of energy storage,

in the manner of (661). For this parallel circuit it is the reciprocal of what

it would be for a series circuit, since the energy loss in a parallel circuit

is inversely proportional to the shunting resistance. Therefore, at the

'" resonant frequency,

QE = wo Co (RR + RM) (664)

It will be noted that since the equivalent circuit is highly

reactive due to the large shunting capacitor, it therefore has a low power

factor. The power factor can be improved by tuning the circuit by means of

an external shunting inductor Lo-*

P C Lm

LO b _rO OT- "R A U C E- R
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f. Impedance Measurements

Examination of the equivalent cireuit of a piezoelectric trans-

ducer shows that if we were able to open up the mechanical branch, the admittance

of the circuit would consist only of the electrical portion. How does one "open

up" the mechanical branch of the equivalent circuit? The analog of the electric

3urrent is the velocity of che radiating surface. Therefore to achieve zero current

one must prevent the transducer from moving. Looked at from another point of view,

if the medium into which the acoustic waves radiate had an infinite specific acous-

tic impedance, then RR wouid be infinite. These remarks are consistent with our

earlier finding that C is the clamped (or blocked) capacitance of the crystal,

since it involves the clamped dielectric constant e'.
In order to evaluate the components of the mechanical branch

it would be logical to measure the admittance of the transducer under normal op-

erating conditions as a function of the frequency, then measure the blocked admit-

tance at the same frequencies. Since the blocked admittance is the admittance of

the electrical branch, it follows that by subtracting the blocked admittance from

the normally loaded admittance, we shall obtain the motional admittance, i.e., the

admittance of the mechanical branch alone.

Note that in measuring admittance we must measure two quantities,

the real (in-phase) component--the conductance G--and the imaginary (out-of-phase)

component--the susceptance B,--since

y = G + j B (665)

The question ncw is, how do we measure the blocked admittance?

Clearly it is not a simple matter to clamp the crystal and keep it from moving.

One way to evaluate the blocked conductance and susceptance is to estimate them from

plots of the normally loaded values vs. frequency. In the vicinity of resonance

the normally loaded conductance and susceptance curves show wiggles, somewhat as

shown below. However, as the frequency departs from resonsnce on either side, the
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transducer velocity tends toward zero, and the difference between the blocked hnd

normally loaded values of the admittance components likewise tent toward zero. A

reasonable estimate of the blocked admittance components can be obtained by fairing

smooth curves through the graphs of the normally loaded values, as suggested by the

dotted lines in the preceding diagram.

When the resulting values of the uiotional susceptance BiM are plotted

against the corresponding values of the motional conductance GM, a very interesting

graph is obtained. To investigate this, let us begin with the Equation for the

motional admittance, which, for simplicity, we shall write &s follows:

- +jx1 - - i(666)
Y M i- X'1 Z 2'

where R' = RR + RM  (661)

ZM2  = RM'2 + XM2 (668)

XM WLM4 - (669)

Hence GM (670)

and 3M  = XM (671)

Squaring and adding (670) and (671) yields

R '2 + X 2  1 GmG 2  + BM2 = , (672)

Equation (672) may be rewritten in the form

G-1 2+ BM2  = 1 2 (672a)2RMI2RI

which is the equation of a circle of radius l/2RM ' with its center on the GM axis

at GM - , as shown in the following sketch. This circle is called a motion-

al admittance circle. It is the locus of points [GM(w), BM(w)J as the (angular)

frequency is varied from 0 to o To see this, let us begin with a very low

frequency, so small that 1 is the dominant term in both CM and BM.
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At these frequencies, Z2 and

GM U w2M2RM'  > 0

BM  ;,- wCM  0

We thus see that the limit w = 0 corresponds to the origin, GM = BM =0, and

that as the frequency is increased, we move around the circle in a clockwise

direction.

The resonant frequency wo, where XM = 0, corresponds to the point

GM BM  0 0 ), which is on the GM axis diametrically opposite the origin.

At frequencies above resonance the reactance XM is positive, and hence BM is nega-

tive. This corresponds to the lower half of the circle. Finally, when w- o,
we return tQ the oriin

The'purpose of obtaining values of GM and BM is to evaluate the

components RM, RR, LM, and 0M. We have already seen that RM', which is the sum of

RR and RM, is equal to the reciprocal of the circle diameter. In order to separate

the radiation resistance RR from the internal loss resistance RM, we must remove

the radiation load. Ideally this requires operation of the transducer in a vacuum,

but air will suffice for practical purposes, since its specific deoustic impedanceJ is less than 0.0003 times that of water. Thus, if Go represents the conductance

measured at the resonant frequency, then
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RR + RM (673)i RR R M  = (Go)water

[RN = 1 (674)
(Go)air

Typical admittance circles for operation in water and air are shown in the preced-

ing sketch. The circle for air, of course, is considerably larger than the circle

for water, since the conductance is larger.

The motional inductance and capacitance can be obtained from measure-

iment of the two quadrantal f, wI and w2. These are the frequencies at

the top and bottom of the admittance circle. At the top BM is equal to GM, or

1 - WlLM = RM' (675)

WlM

and at the bottom BM is equal to the negative of GM, or
Y1

w2CM - W2LM = -RM' (676)

Equations (675) and (676) may be solved simultaneously, yielding

= (677)
w2 -w

W2 - w! (678)C01, = (678)

Several additional interesting observations may be made from these

relations. First, the resonant frequency wo, which is

1w (679)

is equal to the geometric mean of the two quadrantal frequencies, as may be seen

by substituting (677) and (678). Thus,

o= (679a)

Secondly, the quadrantal frequencies occur at the 3 db-down points, since when

a X ± RM', the amplitude of the oscillation is 1/12 times its value at reson-

ance. Third, substitution of (677) into (662) shows that the mechanical Q may be

expressed in terms of the three frequencies as follows:
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R '  w2 - w68O)

g. Efficiency.

The efficiency of the transducer is the ratio of the power

expcnded in the load resistance RR to the total power expended in the transducer.

For this purpose we shall include both the friction loss resistance RR and the

dielectric loss resistance Ro , the latter being shunted across the capacitance Co.

CM LM 1 .,

The efficiency is computed in two steps. The electromechanical

efficiency IM is the ratio of the power in the motional branch to the total power

in both branches. If an rms voltage e is applied across the terminals, the power

lost in Ro is e2/Ro. The current in the motional branch is

-
ZM

where ZM is the magnitude of the motional impedance

Z = (RR + RM)2 + (wL M ±)2

and the power is

iM2 (RR + RM)  e2(RR + RmM ZM2

Therefore e2(gR + RM)

"1EM e2  e2RR + Rm

Rn(RR + Rm) (681)=ZM2 + Ro(RRI+ A M)
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The second step is the mechanoacoustic efficiency in, whicn 16 the

craction of the power in the motional branch which is transmitted as acoustic radia-

t.'on. This is

MA RR+RN(6e2)

The overall efficiency, the electroacoustic efficiency EA is the product of the two,

RORRRo RR (683)
FA =Zy,

2 + RO (RR + (683

At the resonant frequency the reactance is zero and ZM  RR + RN. In this case

(683) simplifies to

R o RR 
(684)

h. Piezoelectric Crystal as a ReceivirnHydrophone.

When the crystal is used as a hydrophone the power input is

in the form of a mechanical force generated by the acoustic waves. The output is

in the form of a voltage at the electrical terminals. In analyzing the hydrophone

circuit we shall make the customary simplifying assumption that the output termi-

nals are open-circuited. The hydrophone may be analyzed either by direct applica-

tion of the piezoelectric equations (615) and (616) to the mechanical system, or

from the point of view of the equivalent circuit. We shall outline the first

approach, omitting many of the detailed mathematical steps, and shall then show

that the second leads to the same result.

Before we begin, it should be noted that if the output circuit

is open, so that no current flows, no power will be drawn from the acoustic waves

in the water, except for internal losses in the crystal itself, which we shall

temporarily neglect. If no power is drawn, the force exerted on the crystal face

by the water must be 90 degrees out of phase with the velocity. Since the force

is equal to the product of the acoustic pressure and the area of the crystal face,

and since the velocity of the sarface is equal to the particle velocity of the

water, this means that the pressure and particle velocity must be 90 degrees out of

phase. In order for such a state of affairs to exist, the incoming wave must hIe

reflected at the surface, and the relation between the incident and reflected waves

must be such that the resultant pressure at the surface has the required character-
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istics as deterwined by the transducer system.

The goal of the analysis is to obtain the relationship between the

input acoustic pressure

P.= peJ~t F eJw t

p P elwt S (685)

and the output vcltage E eJwt. This relation can be obtained from (615), but to

do so we must express the strain al/by in terms of E or F. Assuming the same

mechanical configuration as before, namely, that the crystal is clamped at one end,

we see that equation (621) relating I  to y and t, is applicable to the present

mode of operation, the only difference being in The boundary conditions by which

the coefficient A is determined. When operating as a hydrophone, the velocity

of the crystal face mu3t be equal to the particle velocity of the water, that is,

V1 = u = UeJwt when y ly

The resulting value of A is

U
A 2 w sin kyly

so that the strain is

= .Uky cos kvy ejwt (686)

wa o t sin kyly

We may now express U in terms of the output voltage E by application of (616). It

will be noted that if there is no output current, the net charge on the plated faces

of the crystal is zero, that is,

Since the electrical potential is constant over the face, the first term on the

right integrates to

where Co is the clamped capacitance of the crystal (650). Inserting the value of
iven by (686), and carrying out the integration, we obtain

wCoE = j$U (687)

where is the transformation factor defined by (624). Substitution of (687)
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yield. -
N1 kv Co c kE o eJwt (686a)

sin kyly

If now we insert this value of the strain into (615), we find at the boundary

y =ly,

F
(688)

(dZ ( + k cot kl.,) YyS

The above result appears rather complicated. However, in special

cases it reduces to simpler forms. One case of great practical interest is the ' 1
low-frequency case. If a hydrophone is to receive broadband signals, it should

have a flat response over a wide range of frequencies. For this application it

must operate well below resonance, that is, in the frequency range where kyly <i,

and cot kv lv7 --. In this case (688) becomes
-- kyly'

E = F (689),( x--P + C -y) YyS '
lx Y'

which, upon substituticn of (624), (650), and (617), r'educes to

,k2 F k2SP (9\ P = 7 - = (689a)

where k is the electromechanicAl coupling factor (660). In this expression F/$

is the electrical equivalent input voltage.

Another case of interesf is operation at the resonant frequency.

At resonance, kyly = Ir/2 and cot kyly = 0, so that the output voltage i-

EIFlx F (69C)
d1i2YyS 7

Here the output voltage is equal to the electrical equivalent of F.

Turning now to the equivalent circuit, we see that the radiation
Fejwtload resistance RR is removed from the circuit and an input voltage is

inserted in its place. Since the transducer is open-circuited, there is no load

at the other end. Including the internal friction loss resistance RM and the

dielectric loss resistance Ro , the circuit looks as follows:
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f - - .- -- . .. - - - - . -- -- - -, - . , -:- - . z- "

Ca

This is a series circuit whose complex impedance E is the sum of 'he motional iin-

pedance iM and the electrical impedance ZE

.= + ZE (691)

where =j(WLM (692)

and _

L 1 (693)
--+jw~oRo

The outpuv voltage is the potential drop across ZE" Hence

1E = =2Z-_- f- M + E

11

+~ jwC00

E = 11 7 694)
RM + j(wLM -,-M

"'-M + jWCo

If the resistances RM and Ro are neglected, as was done in the preceding analysis,

the output voltage Lecomes

i + -  -w2LCM 69)0F

t e rto h Co F (695)
Co

In the first of the two special cases considered above, ie., opera-

tion at frequencies well below resonance, we found earlier that the motional{ reactance is a pure capacitance whose value (from (658) and (633)) is

5CM (696)

In this case the equivalent circuit consists merely of two capacitances in series
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and the output voltage simplifids to

CE F 67
Co + CM ,

F k2F

which agrees with our previous result (689a).

In the other special case, where the hydrophone operates at the

resonant frequency wo, it is seen that the output voltage reduces to (690), which

confirms our previous result. It should also be noted that whenever the resistances

in the circuit have negligible effect, the circuit is reactive at all frequencies

ani the output voltage is in phase with the input pressure and 90 degrees out of

phase with the partic.e velocity.

i. Numerical Data

The following table, adapted from Kinsler and Frey, Fundamen-

tals of Acoustics, Second Edition, ' iley, 1962, lists the electromechanical con-

stants of three common piezoelectric tra.-sducer materials.

( C Barium
Quantity Quartz O 'Titanate UnitsX-cut 450 Z-cut _ _ _ cos

Density, L £.65 1.80 5.50 103 kg/m3  1 gm/cm3  j
Yoimg',3 modulus, Y 7.9 -.9 1.11 lO10 newt./m 2  l0ldyne/cm2

Piezoelec. strain coef., d 2.3 24 56 10-12 m/volt l0-l0cm/volt

Free diel. const., 4.5 15.3 12.0 -

Coupling coefficient, k 0.1 0,29 0.18 - -

Longitudinal velocity, c 5.45 3.28 4.5) 103 mnsec 105 cm/sec

Longit. impedance, Fc 14.5 5.9 6,2 lO6kg/m2sec m c
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5. Magnetostrictive Transducers

We have gone into considerable detail in disci sing piezoelec+ric

transducers primarily for the purpose of illustrating some of the basic concepts

of mechanical impedance and the interrelation between the electrical and mechani-

cal systems. Since, except for details of application, these basic concepts apply

also to magnetostrictive transducers, thie section will be limited to a brief dis-

cussion of the magnetostrictive effect and its application to the vibrating elEment

of a transducer. A complete discussion of transducer theory and design is beyond

the scope of these notes.

When a longitudinal magnetic field is applied to a rod or tube of

ferromagnetic mwterial (parallel to the direction of the axis), the prt.sence of

the field will cause a change in physical dimensions, the most significan: of

which is a change in length. If the material was originally unmagnetized, the

direction of the change, i.e. expansion or contraction, is independent of the di-

rection of the field. That is, if the nature of the material is such that it ex-

pands, it will expand whether the field is directed toward one end or toware the

other. In most such materials it is found that the strain (fractional change in

length) produced is approximately proportional to the square of the magnetic flux

density, B, although at very high flux densities there is a tendency toward satur- }
ation. Some materials such as permalloy expand, while others, such as nickel,

contract. The most commonly used materials in magnetostrictive transducer& are

alloys of nickel.

The magnetic field is generated by ui current in a coil wound around

the tube. The magnetic field strength H produced in the material is proportional

to the strength of the current i and to the nuriber of turns per unit length of

the coil (or to the total number of turns n divided by the length I of the

coil).

H = const 1

The constant of proportionality depends upon the system of units employed. In the

old CGS system H is measured in oersteds anl 1 in centimeters, and if i is

measured in amperes, the constant of proportionality is O.4W. In the MKS system,

which is replacing the CGS system in engiaeering applications, H is measured in

ampere-turns/meter, i in amperes, and 1 in meters, and the constant of proportion-

ality is unity. The relation between impere-turns/meter and oersteds is
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i amp-turn/m = 10 0.0126 oeirsted

The relation between the magnetic flux density and the field strength depends upon

the uaterial and is usually expressed in the form

B =1 5,H =4H

where/4& is the permeability of the material,.4/the relative permeability (relative

to a vacuum), andMW is a constant whose value depends upon the system of units

used. It is called the permeability of free space. B is measured in gauss in

the CGS system and in webers/meter2 in the MKS system.

1 weber/m2  104 gauss 5

The constant14, has a value of 1 in the CGS system and 4Wr. 10-7 in the MKS system.

A typical magnetization curve of B vs. H is shown below. It is seen that the curve

13g

is non-linear, so that/A is not a constant but varies with the field strength.

At large field strengths the material saturates.

If we plot the strain produced in a nickel tube as a function of the

driving current in the coil, we obtain a curve similar to that shown below. This

, C v r, 9 E '

I2
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[curve exhibits the combined characteristics of the magnetization curve and the
parabolic relationship between the strain and the flux density, and is therefore

symmetric with respect to the current. It is seen that if an alternating current

is applied to the coil, the system will behave as a rectifier, as indicated in

the above diagram. Furthermore, because the curve has a small slope near the

origin, the output for small currents will be very small. (A large current would

introduce gross distortions in waveform.)

In practical applications it is desirable that the system be as linear as
practicable. Examination of the curve shows that the most nearly linear portion--

and, fortunately, the largest slope--occurs in the neighborhood of the point of

inflection. Optimum operation can therefore be achieved by biasing the material

with a constant field strength sufficient to rais the flux density to this level

when no current flows. In this way approximately linear operation with a relative-

ly high sensitivity can be achieved, as illustrated in the diagram below. The bias

! "I
" 7(A

Cv RR E.Jl1

may be produced either by means of a permanent magnet or by means of another coil

which is energized by direct current. An alternate method of current biasing is

to use the same coil for both currents and to separate the currents by means of

inductors and capacitors as shown below.

i Ji -T-u
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A commonly used form of magnetostrictive element is a thin- walied tube.

This form has the advantage of low eddy-current losses, but its mass is insufficient

for efficient coupling to the water. Solid rods are undesirable because of large

eddy currehts. The coupling problem is solved by attaching a heavy mass to one end

of the tube, the face of this mass being coupled to the water. In many practical

transducer designs a large number of tubes are attached to a single large plate.

Each tube is provided with a separate coil and all coils are energized in phase.

If the mass of the plate is large compared with the mass of the tubes, each tube

will behave approximately as a quarter-wavelength resonator. The free ends of

the tubes are placed in air or some pressure-release material. Since the heavy

mass (the plate) is near the node of the tube vibration, it will be driven with

great force and small amplitude. In a properly designed transducer the mechanical

impedance of the system will match the impedance of the water.

If we consider the dynamics of a single tube operating at resonance with

a mass M attached to one end, it can be shown that the system may be represented

by two lumped masses M and m connected by a spring, as shown belcw. The lumped

mass M is located at the center of gravity of the actual attached mass. The

lumped mass m represents the vibrating tube. This mass is located at the far

VM

M

end of the tube and has a value equal to one half the actual mass of the tube.

The stiffness s of the spring which connects the masses is found to be

=

where Y = Young's modulus

S = cross-sectional area of the tube

Xffi/ = length of the tube

M= wavelength of the wave in the tube.

It will be recalled that both the effective mass and the spring stiffness are the

same as we derived previously for a quarter-wave crystal oscillator at resonance.

The systems differ, of course, in that the crystal was clamped at one end and

radiated into the water at the other end, whereas in the magnetostrictive
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oscillator the free end is on the back side away from the water and the "clamped"

end is rot really clamped but is attached to the heavy mass which is located just

beyond the node and vibrates with a small amplitude. A simple analysis shows that

the displacements, velocities, and accelerations of the lumped masses on either

end of the spring are inversely proportional to the respective masses. The vibra-

tion of the free end with a small mass and large amplitude thus balances the

vibration of the large mass on the other end. The node of the actual vibration

is located at the center of gravity of the two lumped masses. The net effect is

the same as would be obtained if the free end were removed and the bar e-'e rigidly

clamped (or attached to an infinite mass) at the node.

It will be noted that the electric input to the piezoelectric projector

was expressed in terms of the applied voltage, whereas the input to the magneto-

strictive projector has been expressed in terms of the current. This is but one

aspect of v general relationship between the equivalent circuits of the zwc types.

The circuits are related by the principle of duality, by which the current in one

circuit corresponds to the voltage in the othier, impedance in one to admittance

in the other, series connections in one to parallel connections in the other, etc.
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TECHNOLOGY OF UNDERWATER SOUND

REVJSED NOTES

TRANSDUCERS (continued)

B. Directional Chariz'teristics

1. Introduction

We have seen that a small sound source, such as a pulsating
S sphere whose radius is sinall comapared with a wavelength, generates a

spherically symmetric (omnidirectional) sound field in which the pressure

is a function of only the radial coordinate, as indicated by equation (136)

A j(wt-kr)P - e (136)
r

The situation is different in the case of a transducer having extended

dimensions. The simplest case to consider is the case of two omnidirectional

sources, each of the same strength (that is, sarn)e value of A in (136)) and

operating at the same frequency and with the same phase. If the two sources

are separated from each other by a finite distance, it is clear that to any

given point in the sound field the distances traveled by the waves from the

two sources will in general not be the same, and hence the two waves will

interfere with one another. There will be some directions in space where

the two individual pressures will be in phase and resultant pressure will be

large. At other locations the waves will differ in phase by various amounts

and tho resultant pressure will be smaller. When the resultant pressure is

measured or computed as a function of the direCtion relative to a fixed set

of axes, there results a pattern called the directivity pattern of the trans-

ducer. In the case of an array of two omnidirectional sources, the pattern

is a function of the ratio of the separaticn distance to the wavelength of the

sound waves,

In the case of a transducer whose radiating surface covers a

finite area S, the directivity pattern may be computed by dividing the area
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into infinitesimal elements dS and considering each little element as an

omnidirectional source. The resultant pressure at any point in the sound

field is then computed by adding up all the incremental pressures due to

the elements dS, that is, by an integration process.

In the case of a transducer having only a linear dimension,

such as a straight line or a ring, the linear dimension may be divided into

infinitesimal increments, each increment being considered an infinitesimal

omnidirectional sound source, and the resultant pressure at any point in the

sound field may be compi-ad by a similar integration process. Real trans-

ducers, of course, are never one-dimensionai lines, but a cylinder, for

example, whose length is large con-par.:ed with its diameter may be approxi-

mated by a hypothetical ideal 1iear transducer.

In describ-ng the directivity pattern of a transducer we are

concerned only with relative (not absolute) values of the pressure. In general,

for any transducer, there is a singie direction, or a locus of directions,

along which the pressure is a maximum. In the case of a circular piston,

for example, the pressure is a maximum along a line normal to the circular

face. This is the direction of the axis of the sonar beam. The actual value

of the pressure at a specified reference distance from the transducer along

this axis, when considered in relation to the input electrical current, is a

measure of the sensitivity of the transducer, and will be disc ussed in a

separate section. In considering the direztivity pattern wt are concerned

only with the relative pressure response, which will be defined as the ratio

of the pressure in any direction ( 8, p) to the pressure along the axis, both

pressures measured at the same distance from the transducer. If p(O, @)

zepresents the pressure at a given distance along the direction (0, ), .nd

po represents the pressure along the beam axis at the same distance, then

Relative pressure response =20(0 (701)Po

Sthe rli inety rtensity is proportionalo the square of the pressure,

the relative intensity response, or, since we are talking about a projector.
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the relative tra.nsmitting (intensity) response, r(0, -s), :s

4~(e4,) P~e~)j ~(702)

In describing dixectivity patteri-s we must distinguish between

the near field and the far field. The near field may be loosely considered

to be that region in space which lies within a few wavelengths of the trans-

ducer (or transducer array). If we divide the radiating surface into

infinitesimal elements and consider each element as a simple source, then

the distances from these elements to a point in the near field will exhibit

large percentage variations, so that the amplitudek. of the waves from the

closest elements will be appreciably larger than the amplitudes of the waves

from the more distant elements. Thus, in the near field, the contributions

from the closest elements will have a, proportionately larger effeqt than the

contributions from the more distant elements. The structure of the near

field is therefore in general quite complicated, and exact mathematical

computations are all but impossible. Fortunately, in most sonar applica-

tions the near field is of little concern to any one except the transducer

designer. It should be pointed out, however, that interest in the near field

has recently been generated by practical problems ass6ciated with the

calibration of large transducer arrays.

The far field is hat region of space where the distance from the

transducer is large compared with the transducer dimensions. In this case

the transducer may be considered as effectively equivalent to a point source

having the appropriate directional characteristics. The distance must be

great enough to permit the two following assumptions. First, the spreading

loss to any point in the far field is the same for all elements of the trans-

ducer. Differences in path length produce differences in phase but not in

amplitude. Second, ray paths from all elements of the transducer to any

point in the far field are parallel lines. This second assumption permits
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us to talk about directions in space, as we did in defining the relative

pressure response, without worrying about the differences in direction

associated with finite transduce,- dimensions. (In the near field the paths

from different elements of the transdacer have significantly different

directions. ) In these notes we shall discuss only far-field directivity

patterns.

The discussion thus far has been concerned with acoustic

projectors. Similar considerations apply to hydrophones. In this case we

consider plane waves impinging on the hydrophone (or hydrophone array).

When a wave of a given intensity arrives along the maximum response axis,

which we shall call the 'beam" axis, we shall designate the output voltage

as eo . When a wave of the same intensity arrives from any other direction

(0, 40), we shall designate the output voltage as e(O, 4). The relative voltage

response is then

Relative voltage response = e(8 ) (703)

The corresponding power response, or relative receiving response, -' (0,4),

is the square of this,

S(0, 0) =Ise - 1(704
eo J (0)i

A transducer which has the same relative transmitting and

receiving response, that is, for which

11 '(0, ) 1(0, ) (705)

is called a reversible transducer.

When the relative response is expressed in decibels, it is

called the deviation loss, and will be designated by a large N. Thus

1
N(0,4)= 10 log ()) -10 log 104) (706)M 0

I
N'(e,4)= 10 log -10 log 1 ' (0,4) (706a)
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In the derivation of directivity patterns 'far specific trans-

ducer types we shall talk in terms of projectors. Howevel, the same

patterns will apply to the identical (ideal) transducers if us-.d as hydrophones.

An introductory note is in order relative to the specific,-tion of
directions in space in terms of the angles (e, dp). For the transducer tvp, s

to be discussed we shall employ spherical polar coordinates. Depending

upon the transducer type, two different forms will be used. In both types the

angle will correspond to ongitude on the earth, In one type 8 will correspond V

to latitude on the earth, that is, 9 will be measured north and south from the

equator. In the other type 0 will correspond to the co-latitude, measured

away from the pole.

2. Directivity Patterns for Specific Transducer Types

a. Two-.spot Array

We shall consider first the pattern of an array, onsisting P

of two identical omnidirectional sources separaced by a distance a and

operating in phase with each other. Let us set up a coordinate system having

its origin at the midpoint of the line joining the two sources Sl and S 2 . We

desire to compute the resultant pressure at the point P located at a dstanct j
r from the origin, along a line making an angle 0 with the line OX, which

is perpendicular to SI S?, Assuming the individual pressure due to each

source separately to be given by an expression of the form (136), the

resultant pressure is

j(wt-krl) A J(wtk (707)
p p )-ej +-ej 77
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where rI and r2 are the respective distances SP and S2 P from the sources

to the poi-i$ P, and k is the wave number,

If the point P is In the near field, as suggested by the preceding sketch,

the expressions for r and r? in terms of r, 8, and a involve radicals

and are very complicated. We shall therefore restrict our analysis to the

far field, where r > > a. In this case the three lines StP, OP, and S2 P

are essentially parallel, and

rl = r a sin 0 (708)
2

and
ar2 r + 2- sin 0 (708a)

Furthermore, since a is very small compared to r, we may with negligible

error replace both r 1 and r 2 with r in the denominators of (707), obtainingka ka

A e j(wt-kr + -r- sin 0) j(wt-kr - sin 0)
p (0) r e + e

r _

Ae j(wt-kr) ka sin e -jka sin 8)r (e + e (709)I. r

To simplify the notation, let
ka ira-sin e -' sin 0 (710)

Then 2Ae j(wt-kr)
p(0) =Cos (7 0 9)

243



It is clear that the resultant pressure is a maximum in the direction of the

axis OX, since in this direction the path lengths r1 and r 2 are equal and the

pressures add in phase. In this directibn

O ',b =0

and therefore tht maximum pressure at a distance r is

j(vwt-kr)
PO e (711)

Hence the relative pressure response (701) is

= cos 41 (712'
PO

or, in an alternate form

P(O) =. sin 2 4 (712a)
Po 2 sin ji

The above procedure illustrates the basic far-field
assumptions which wil be employed in computing directivity patterns of

other transducer types. First, the fractional difference in path length between

r1 and r2 is so small that the-,- may both be replaced by the average distance r

in the expressions for the amplitude of the waves. The path difference

affects only the relative phaess of the waves at the field point P where the

resultant pressure is computed. Second, the paths I1 and rZ are so nearly

parallel that their difference in length may be computed on the assumption

th&* they are parallel lines,

The pattern of this simple array is obtained by plotting the

pressure ratio (712) as a function of 0. It is seen first of all that the

pressure is a maximum at 8 : 0 and that the pattern is symmetic (the same

for positive and negative values of 0). From the definition of .D (710) it is
a

seen that the shape of the pattern depends upon the ratio that is, upon the

spacing of the two sources in relation to the wavelength of the sound waves.

Suppose, for example, that

a = zX
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Then, as 8 increases from 0 to 7r/7, 4j will increase from 0 to 2 , and

cos d will vary from 1 to 0 to -.1 to 0 and back to + 1. The points at which

the response is ze-.o ( r = / and ± 37r/2 in this example) are called

nulls. The central portion between the first null on either side, and containing

the direction of maximum response, is called the beam or the major or primary

lobe. The portions between adjacent nulls on either side of the major lobe are

called secondary lobes or side lobes. In the present example there are two

side lobes on either side. It is seen that in the first side lobe (7r/2 < p < 37/2)

the pressure ratio is negative, indicating a phase reversal. In the second
side iobe (37r/2 < tP < 27r) the ratio is positive again. This is a general

characteristic of most transducers - the phase alternates between successive

side lobes. rhe relative intensity response, being the square of the pressure

response, is of course positive in all lobes. It is seen that for a two-spot

array the maximum intensity in each of the side lobes is the same as in the

primary lobe. This, of course, is not a good design for a practical sonar

transducer, and, as we shall see, appreciable reduction in the heights of the

side lobes can be achieved in morc sophisticated designs.

Another factor of practical importance is the response in

the 1ernd-fire" direction, that is, in the direction of the line joining the

sources (0 = 900). In many applications it is desirable to have a low response

in the direction at right angles to the beam in order to reje-:t interfering noise,

In the example we have chosen the response at 90 is a maximum. It can be seen

equal to an odd number of half wavelengths.

An important measure of the directional characteristics of

a transducer is the beamwidth. Unfortunately, there is no universally

accepted standard definition of beamwidth. From a theoretical standpoint

it would be convenient to define the beamwidth as the angular distance between

the first null on either side of the beam. Such a definition is not particularly

practical, since the region in the vicinity of the null is of no rractical value.
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Three different def.initions are in common use, .A of them being expressed

at the angular spread between points of various relative intensities, that is,

between the

3 db-down points

6 db-dcvn points

10 db-down points

t The corresponding intensity ratios are 1/2, 1/4, and 1/10, and the correspond

ing pressure ratios are

Db Do--n Rel. Press. Resp.
;,3 O. 707

6 0.500

10 0.316

In the above example, where a = Z)., the beamwidth is 20, where

cos (2w sin 0) =I Po

The computation of beamwidths for the two-spot array with a 2X spacing is

shown in the following table

Db Cos 2t sn0) 27 sin e si. o 20

3 .707 .250 r .125 14.40

6 .500 .333 ir .167 19.20

10 .316 .3 98r .199 22.90

It can be seen that the three definitions lead to significaiAty different numerical

values. For this reason it is advisable when specifying beamwidths to state

the definition to which the values apply.
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It will be noted that in (709) and (712) the pressure is

written as a function only of the angle 6. The angle is masured in a 2

plane perpendicular to the line Sl S2. From the geometry of the situation

it is clear that the pattern is s-jmmetrik about the axis S1 S2 . The actual

pattern, of course, is three-dimensional, and the two-dimensional pattern

discussed above is only a trace uf the three-dimensional pattern in the plane

of the paper. The actual pattern is therefore obtained by rotating the two-

dimensional pattern about the axis S, S?. We thus see that the "beam, " or

major lobe, is not a beam at all in the sense of a searchlight beam, but rather

a doughnut-shaped affair; and the direction of *naximum response is not a

single direction 'ut rather a locus of all such directions in the equatorial plane.

The side lobes are conically-shaped regions. Comparing our polar coordinate

system with that of the earth we see that the angle corresponds to longitude,

as stated earlier, and 0 corresponds to latitude. The primary lobe covers the

equatorial region, and the pole is the line joining the two sources. This

coordinate system is useful in describing all axially symmetric beam patterns
whose maximum response is in the equatorial plane.

b, Multi-S ot Array

Let us now consider a linear array consisting of n equally

spaced omnidirectional sources, the spacing between adjacent ones being a.

All sources a:e assumed to be idei.tical aad to be operating in phase. The

rnathematical formulation is slightly different, depending on whether the

number of elesments is even or odd, but the end result is the same. For

-onvenience we shall assume n to be even. We choose the origin of the
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coordin~ite systeni at the midpoint of the array and define the angie 0 as

before.

To obtain the far-field pattern, we assume equal amplitudes for the

pressures due to all individual sources, and wve treat all the ray paths as

being parallel. The resultant pressure at a distance r in the direction 0 is

merely an extension of (709)

P()=Ae j(wt-kr) 1L (nIk i jj(n-3)ka sin 8 ~ -ka sin 0
p()le ajn1k + e t.

- jka sin 9 f j(n-3)ka sin 0 -!j(n-l)ka sin
+ e + e+ + e9 (713)

The maximum response occurs at 0 =0 and is the sumn of the individual

p~ressures, all with the same phase
~j(wt ..kr)(74

Upon substitution of ip from (710), the relative pressure response --s found

to be

(O)_ j Le(n-4 )j + e (n-3)j + ... + eA + e8 +..e (n-I)j (715)

p0 sreut a be exrse in either of two alternate forms. Fisfrom

the cosine formula c~~(~ i)Frt
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we obtain
£ _____~P c_-n-~P

-( -)cosi + Cos 34 +o (n-1+ (715a) j
PO nL j

To obtain the alternate expression, factor out e(n -l)j  from the series in

brackets, leaving

I +e + e + ... + e

This series is of the form

1 + X + X + ... X -
1 -x

p(e) e(n-l)jp l-e - Znj %5Hence --e =
PO n 1-e -Zjd

1 e-n j%5 -e-nJ%5

n eA¢ e:J

I ( jx  - -jx)
And, since sin x (=-

we obtain

p(O) _ sin n di71b
Po n sin %

where % ka T a

si 0 sin 0 (710)

The nulls in the multispot pattern occur for values of

%5 %5 such that
And, e1, 2, .(7.6)

The corresponding beam pattern angles 9V, are obtained by* inseiting (710)

sin w a (7i7)

ra

Since sin 8, < 1, the maximum number of nulls on either side of the main

lobe is
ni -12(718)

The points cf maximum response (the peaks) f the lobes can be obtained by

setting ththe of (715) equal to zero. The resulting equation isn

tan n n tan (719)
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This equatibxA is m6st donveniently solved fcr given value of n by plotting

both tan nqp and n tan p vs. tp and reading off the values of ip at the inter-

sections of the curves. If the array contains more than two.eiements, the

values of nip which satisfy (719) are reasonably close to odd integral

multiples of ir/2, and hence the corresponding values of sin nip are fairly

close to unity. Therefore, if we substitute sin np = 1 in (715), the resulting

envelope equation

(p(O)) = 1 (720)
Po env. n sin

gives a good measure of the maximum r'esponse in the side lobes at the

appropriate values of ip. Since it is usually desirable to reduce the response

in the side lobes as much as possible, we should like sin ip to continue to

increase as the angle 0 increases from 0 to 90* Reference to (710) reveals

that the spacing, a, between adjacent elements should not exceed one-half

wavelength, if a=- X, then

i - sin0
iT iTI

so that when 0 = -, ip = -. With this spacing it is seen that sin ip increases

steadily from 0 to I as 0 goes from 0 to 90. if the spacing is less than i,

sin ip increases with 0, but the maximum value is less than 1. On the other

hand, if the spacing is greater than 1X, sin ip reaches its maximum value

(and the envelope of the beam pattern reaches its minimum value) at a value

of 0 less than 90. Beyond this point the side lobes begin to build up again.

c. Continuous Linear Transducer

In analyzing any continuous line type transducer, whether a

straight line or any other shape, we divide the line into infinitesimal elements

of length d and treat each of these as an omnidirectional source of strength

Ad§, where the constant A is a measure of the pressure produced per unit

length of the line. In the present discussion we shall analyze a straight-line j
transducer of length t,. We shall set the origin of our coordinate system at

the midpoint of the line, as indicated in the sketch. Consider an element d§
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at a distance from the origin. The length of the path from this element to a

point P in the far field, located at a distance r at an angie 0 from the origin,

is r sin 0. Neglecting § in comparison with r in the amplitude factor, the

incremental pressure at P due to d is seen to be

d'0' -Ad§ j(wt.'kr tk sin 0)
-r

and the resultant pressure is

j2 koz sin 0
(j A (wt -kr) ed§

which readily integrates to sn0

AC j(wt -kr) si ?
rk

in the case ~sin onth

A5 n te cse f tenultispot arathe pressure is a maximum o h

axis 0 0, where all elements of the line add in phase, giving

p 0  t j(wt-kr)

The relative pressure response is then

p(O) sinj (721

where

T s- siAG = sin 0 (722)
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It should be noted that the same result can be obtained from

the multispot array by the limiting process of letting the number of elements

go to infinity while maintaining a fixed length of the array. To do this, we

let

n -- '

a - 0

b na =
wa

in equation (715). When this is done, it is seen that --- sin 8 becomes an

increasingly small angle, so that
• .na rrsin (asin 0) -1 s-- sne- -sin e

n. na i
while sin (.-- sin 8) -- sin )sin )

Hence
sin (---- sin 0)p(_) _ __ __ _ __ _

sine

which agrees with (721).

As may be expected, the pattern of a continuous line trans-

ducer is sirrilar to that of a multispot array containing a large number of

elements. The nulls occur where

= nr, n 1, 2, 3, ... (723)

or
nX

sin 0 (724)

The locations of the maxima of the side lobes are found by setting the

derivative of (721) equal to zero. The corresponding values of qp are obtained

as solutions of the transcendental equation

tan J= (725)

The solutions are listed in many books of mathematical tables. The first

five values are tabulated below.
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Side Lobe 4 at Max. Height of lobe
No. (radians) (db down)

1 4.493 13.26

2 7.725 17.83

3 10.904 20.79

4 14.066 22.99

5 17.221 24.73

For any given value of the maximum value of 4i occurs at 0 =90" and is

'max (726)

The maximum number of maxima on either side of the beam can be found by

comparing 'Pmax with the values listed in the above table. The value of the

response at each of the maxima is found by substituting the values from the

table into (721). The decibel equivalents of these maxima, that is,

-20 log P(O)

are also listed in the table.

The beamwidth of a linear transducer is obtained by setting

-20 log dbPo

or

sin (0. 707 (3 db)

- 0. 500 (6 db)
( 0 .316 (10 db)J

which leads to

C 0.44 X/L (3 db)')
sin 0 0.602 X/t (6 db) '7

o.738 X/4, (LO db)j

The beamwidth, of course, is 20.

As in the case of multispot arrays, the beam pattern in

three dimensions is obtained by rotating the two-dimensional pattern about

the transducer axis.
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d. Ring Transducer L
?1 Another example of a continuous line transducer is the

circular ring. The procedure for deriving the beam pattern for a ring is

basically the same as for a line. There is, however, a difference in the

nature of the patternwhich leads to the select.cn of a different coordinate

system. The beam of a circular ring transducer is like that of a search-

light. The beam axis is a single line th:ough the center of the ring normal

to its plane. It is logical therefore to measure the angle r, from the axis,

that is, the co-latitade measured from the pole, rather than the latitude

measured from the equator. The angle of course, is still the longitude

angle. From symmetry considerations the pattern of a circular ring is

independent of .

We shall merely state the resulting equation of the rela-

tive pressure response without deriving it.

n(8 4)(26)
":" Po

where

= - sin 9

d diameter of ring

J6 = Bessel function of zero order

e, Circular Piston
The circular piston is one of th-e simplest and most commonl '

used forms of transducer involving a continuous area, and we shall derive its

beam pattern to illustrate the nethod of analysis employed for area type

Tj -l transducers.

We choose the center of the circular face as the origin of

our coordinate system. The axis cf symmetry is the line through the origin

perpendicular to the plane of the face. This is the axis of the beam, We

N shall define 6 as the polar angle measured awayf from this axis. The plane

of the radiating face thus corresponds to the equatorial plane of the earth and
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0 corresponds to the co.latitude. The longitude angle 4 is measured in

the plane of the face relative to an arbitrarily chosen reference direction

(Greenwich meridian). From the geometry of the situation it is clear that

the pressure in the sound field generated by this transducer is symmetric

about The axis and is thus independent of 4. Therefore, without loss of

generality we may select the point P in the far field at which we compute

the pressure to lie in the 4 = 0 plane, the other coordinates being r and 0.

To compute the pressure p(0) at the point P we divide

the radiating face into infinitesimal elements dS and consider each element

to be an omnidirectional source of strength AdS, where A in this case is a

measure of the pressure produced per unit area. In accordance with the

standard far-field assumptions, the amplitude of the pressure at P due to
AdS

each element is - ( he same value of r being used for al! elements).r

Let the radius of the piston face be a, and let the element dS

be located at the point Q at a distance s from the center, its location being

described by the polar coordinates (s, 4). The element of area is

dS=s d sd

255



We must now compute the distance QP from the radiating

element to the far-field point. By hypothesis the point P lies in a plane

defined by @ 0 and the distance OP is equal to r. If we drop a pcrpendicular

from Q to Q' on the # = 0 axis, .it is seen that all points on QQ' are equi- Vt
distant from P. From the sketch it is seen that

Q'P = OP - OQ' sii@

or

Q'P r - s sin 0 n-os 4

The incremental pressure at P is

A j(wt-kr) jks sin 0 coss
dp (0) = e e s ds d

The resultant pressure is obtained by inregrating dp(O) over the area of the

face. It is

a ZirA j(wt-kr) fr jks sir, 0 cossd7
r

0 0

Thie integral cannot be evaluated in closed form. However, a series

solution can be obtained by expanding the exponential in powers of jks sin O co s,

If we integrate over first, we note first of all that from

symmetry considerations the htegral from 0 to 7r is equal to the integral

from ir to 2r. Second, the integrals of odd powers of co from 0 to Tr

vanish. Third, if n is even,

c~ Z ~ d = 1 3 .5 ...
iT"4 .6... 2n .2

0

Fourth, on the axis where 8 0, the reference pressure po may be evaluated

directly, yielding

ra A j(wt-kr)
= r e

4
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The relative pressure response therefore is

p(() 2 a i 3 s= - -v(ks sin G)2 + sds
Po 0 L 224

SI I l+ 1 1.3 44 46-_- 1 1.3.5 6+. (728)12!= 4 2[€ 4! 6 2.4 6! 8 2. 4. "

where

=ka sin 8 sin 0 (729)

Equation (728) may be transformed as follows
p(q) =2[ ,3 5 ,7

2- -- - 3 +'' (728a)
Po 4)L2 1! 2! 2 2! 3! 27 3! 4.

The series in brackets is the Bessel function of first order, JI( ). The

pressure ratio may therefore be written as

p(e) 2 Jl ('i), (728b)

Po

The first order Bessel function is an oscillatory function

resembling a damped sine wave, and the pattern as a function of 0 is similar

to that of a linear transducer. The first five nulls occur at the following

values of t

Null No. _ .

1 3.832

2 7.016

3 10.174

4 13.324

5 16.471

The maxima of the first five side lobes are as follows:
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A eo. D downi

1 5.136 17.57 f
2 8.417 23.81

3 11.620 27.96

4 14796 31.08

5 17.960 33.60

It should be noted that the three-dimensional bea. n pattern

of a circular piston is fundamentally different from that of a line. The

primary lobe is directed along the axis of the circular face rather than being

spread out over the equatorial plane.

4 f. Rectangular Plate

6The method of analysis for a rectangvular plate transducer

is similar to that of the circular piston, except that the integration is carried

out over a rectangular instead of a circular area. There is a significant

difference, however, in the resulting beam pattern. The pattern is no longer

symmetric about the axis; it is a function of 46 as well as E. We shall omit

the derivation. If the length and width of the rectangle are 4 and w, respect-

ively, and the arbitrary reference direction from which is measured is taken

parallel to the side -t, the relative pressur3 response is found to be
44

Zp (0, sni sin 4 w (730)

where

494, = jk4'sin 8cos (731)s in 0 Cos (3)

w kw sin 0 sin = tw sin O,siin4 (731a)

This pattern has several interesting characteristics,

Consider first the case where 0 = . This gives the pattern in the plane

258



V.r _ _

11 _ _ o

perpendicular to the side w. It is seen that

sin w
w

since, =0. Hence

p(e, 0) =sin Lt (732)

Po

The pattern if, this plane is the same as that of a linear transducer of length C.

Similarly in the plane *= 90 ° , qi6 = 0 and

p (0, Z-) sin w
D= (733)

Po w

This is the same as the pattern of a line of length w. Next, consider a value

such that

w sin 4 = cos 4

tan- / ( ,,I
w

This leads to

w s in = c o s 4 ) =¢ 2-t

The relative voltage response is
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-. j , --- __ __

p(O, t-n-~ ' SI-~ *: w sin n

w XT2 +w2 )
po -r tw- sin 9

in the special case where %v-= t, -the value of- 4-is 450 and the relative pressure

response is
P 0  1 , sin 01t, p (0 si

It is seen that in the plane defined by (734) the relative pressure response is
sinx

the square of a 1- function. It therefore does not exhibit the usual phasex

reversals which normally occur between successive side lobes, and furthermore

the side lobes are much weaker than those of a linear transducer of equivalent

length; they are twice as many db down. In the special case of a square

radiating surface this condition occurs in the plane of the diagonal.

g. Pressure Gradient Hydrophone
SConsider a hyrpoearyconsisting of two omni-directional

elements separated by a distance a, the two outputs being subtracted rather

than added. Suppose that a plane wave is traveling along the direction of the

line joining the two elements. If the instantaneous value of the pressure at

the midpoint of this line is P e jw then the pressures at the two elements are
±ka~

p1  Pei%"-- Z/

and 2 Pej(wt- 2)

and the output voltage of the array is

ka jwt

ZjBP sin - e jwt (736)z
where B is a constant representing the sensitivity of the elements. lfia'single

oinnid1rectjonal element were placed at the location of the midpoint of the

260



two-element array its output would be

BP e jWt

It is seen that, relative to the single hydrophone at the center, the output of

the two-hydrophone differential array is shifted in phase by 90 degrees and

ka
is multiplied by 2 sin - .

If the system is to be used as a practical instrument, certain

restrictions must be placed upon the spacing, a. For example, if a were

equal to a whole wavelength, a X, then the output would be zero, since the

two waves would be in phase, and

ka ira
sin - = sin-j- = sin ?r =0

On the other hand, if a. were extremely small compared with a wavelength,

then

kasin- T<<

and the output would be extremely small. Although the maximum output occurs

when sin -- = I, or a = zX, it is desirable because of beam pattern considera-

tions (to be discussed below) that the spacing be short enough that the small
ka ka

angle approximation sin - -- may be applied, the upper limit being about

1/6 of a wavelength. If the small angle approximation is applied to (736), the

result is

e o  jka BP e (736a)

Comparisoin with equation (23) shows that the output (736a) is proportional to

the pressure gradient at the midpoint of the line joining the two hydrophones.

The transducer is therefore called a pressure-gradient hydrophone.

To derive the beam pattern let us suppose that a plane wave

is received, whose direction of propagation makes an angle 8 with the axis

of the hydrophone array. If the pressure at the midpoint is P e wt then
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4,4

iiu

ka
j ~(wt + T **COS 0)r

ha
= pj(wt -cos e)

and the output voltage is
ka jwte(9) = Zj BP sin (-y cos 0) e (738)

The relative voltage response is t en

.ka-t" =sin-
sin cos e)

eo sin ka(739),1

0e kaka

If the spacing of the elements is close enough that -- may be considered a

small angle, the relative voltage response is approximately

e(=) cos e (739a)

eb
The beam pattern is thus a cosine pattern. A simple calculation will show

that larger values of- (such as -= - ) tend to broaden the beam.

It is easily shown that the same type of response is obtained

from a rectangular block of length a, which is mounted in such a way as to

permit it to oscillate in a single dimension.

One of the difficulties in using pressure-gradient hydrophones

is the ambiguity in sensing the direction from which a wave is arriving. The

only difference in ov'tput between a wave having a direction 8 and a wave having

a direction 7r -0 is a phase reversal. The rms outputs are identical. To

overcome this difficulty, an auxiliary omnidirectional hydrophone is sometimes

located in the vicinity of the midpoint and its output is added to that of the

pressure -gradient hydrophone. If the output of the auxiliary hydrophone is
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adjusted to be equaloto that of the pressure-gradient hydrophone in the direction
of inaximum response, that is, is equal to ka BP e t , and if the phases, of

the two outputs are shifted relative 1.o each other by 90 degrees, so that both°
x

have the same phase, then the combined output is (assuming a <

esum(O) = ka BP (I + cos 0) e jwt

and the relative pressure response is

= Y(1 +cos 0) (740)
0° sum

The auxiliary hydrophone serves to provide phase discrimina-

tion. If the incomirg wave is arriving from the direction 0 = 0, the two outputs

are in phase and the resultant pressure is twice that of each separately. If

;he wave is coming from the direction 0 = 180*, the two outputs are 1800 out

of phase and the resultant is zero. The pattern described by (740) is called

a cardioid pattern. The cosine and cardioid patterns are illustrated in the

sketches below.[O Co1 N E

3. Shading of Transducers

The presence of side lobes in a transducer beam pattern is

usu,!.Ily undesirable. In a projector the energy radiated into the side lobes is

wasted and may under some circumstances produce harmful reverberation,

In a hydrophone the noise introduced through the side lobes introduces
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additional interference; Aiso, a signal detected through a side lobe is

capable of-causing- great confusion.

It has been found that the side lobe response of a trans-

ducer can be reduced-by a technique known as shading. The essence of 'the

technique is to reduce the sensitivity of outer portions of the transducer

surface. In. the case of a linear multispot array, shading may be accomplished

either by reducing the sensitivity of the outer elements relative to, those in the

center, or by spacing the outer elements farther apart. In a single area-type

transducer an equivalent effect can be obtained by breaking up the surface into .)F

annular zones and progressively reducing the sensitivity of the outer zones.

The following derivation will illustrate one method of shading

a linear multispot array. It is based on an article by C. L. Dolph in the

June 1946 issue of the Proceedings of the IRE. Rather than deriving the

general formulas, we shall illustrate the method by applying it to the specific

case of a 6-element array with a fixed spacing, a, between adjacent elements.

The relative pressure response for an unshaded array is given by (715a) with

n = 6. We shall assume the shading to be symmetric about the center, so that

symmetrically located elements have the same sensitivity. Let Alrepresent

the sensitivity of the two center elements, 3 and 4, A3 the sensitivity of

the elements 2 and 5, and A5 the sensitivity of the outer elements I and 6,

The relative pressure response of the .:haded array is then
p(O) Al cos + A3 cos 3 +A5 cos 57

Po A, + A3 
+ A5

If we designate

cos = (742)

then the cosines of the multiple angles can be expressed as polynomials in p.

cos3h4 = 4p - 3p (742a)

cos 5i - 16 5 - 20p 3 + 5 p (742b)

These polynomials are known as Chebyshev polynomials and are designated

as Tn(p) where n represents the highest power of p appearing in the
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polynomial. As, t varies from 0 to 180 .degi-ees, . varies from 1 to .

Since

T n ,P) = -cos nj

it is seen that Tn(p) has n-I maxima and minima in the interval--I < k < + 1,

and that its value is either + 1 or -1 at each of these points.

Substitutioi of these polynomials into (741) yields

J5
p(E) _ 16A5 I 5 - (ZOA5 - 4A 3 )P.3 + (5A5 - 3A3 + Al)g (741a)

Po A5 
+ A3 

+ Al

Since the numerator of this expression is a 5 th degree polynomial in I, let

us choose values of the A's to make this a Chebshev polyaomia" cf the 5 th

degree. Let z be a parameter (whose value is to be determined) such that

the numerator of (741a) is equal to

T 5 (zg) = i6z 5 p5 _ 20z 3 13 + 5zp (743)

The A's may be evaluated in terms of z by equating coefficients of like powers

of p. Thus,

A5 = z5  (744a)

A 3 = 5z 5 - 5z 3  (744b)

A1 = 10z 5 - 15z 3 + 5z (744c)

and

A 1 +A3 +A 5 = 16z 5 -Z0z 3 +5z = T5(z) (744d)

The relative pressure response is

p(0) _ T5 (zP)

Po T5 (z)

We note that the direction of maximum response, 0 0, corresponds to P = I,

and to a relative pressure response of unity. The peaks of tl-e side lobes

will occur at the maxima and minima of T5 (zp), whose value at these points

is ± 1. Thus the maximum (absolute) value of the relatile pressure response
Iis the same for all the side lobes and is equal to T5(z ) , Since the side lobe

response must be less than the response on the beam axis, it follows that

T5(z) > I

and hence Z>
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We a e thus conczrned with a Chebyshev polynomial outside its normal

range.

The problem is now to find the value of z which will

produce the desired amount of side lobe reduction. To this end, let r denote

the ratio of the response on the axis te the response at tie peaks of the side

lobes, so that the side lobes are reduced by

Side lobe reduction = 20 log r (745)
~~For a pre-selected value of r we must evaluate z from the equation"

r! 6 z5  20 z3 +5z (746) O

Although this equation can be solved for z by numerical methods, the process

becomes increasingly tedious as the number of elements in the array is in-

creased. For side lobe ieductions of about .:0 db or more a veiy good approxi-

mation is obtained from the formula

z X 2r)n - + (2r) (747)

Using this value Qf z, the coefficients Ai, A3 , and A5 may be evaluated

from (744a), (744b), and (744c), and the beam pattern may then be computedt

from (741).

To illustrate the theory with a numerical example, the follow-

ing table lists the numerical values of r, z, and the coefficients Al, A3, and

A5 for 6- element linear shaded arrays whose side lobes are 15, 23, 25, and 30db

down relati, e to the mahi lobe.

CONSTANTS OF A 6-ELEMENT SHADED MULTISPOT ARRAY

Db Down r z Al A3 A5

L5 5.623 1.1186 2.113 1.759 1.752iA
20 10.000 1.1846 4.315 3.352 2.333

25 P. 783 1.2660 8.415 6.115 3.252

30 31.623 1.3641 15.976 10. 923 4.273 '

It will be noted that as the side lobe reduction is increased, relatively more

weight is given to the cential elements Al and less to the outer elements A5 .
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The values -of z listed in the above table were calculated from the exact

equation (746). The corresponding approximate values from (747) are

1.1192, 1.1849, 1.2661, and 1.3641.

Beam patterns for shaded and unshaded arrays with an

element spacing a = are shown in 'he accompanying graphs.

It is to be expected that a price must be paid for the side lobe

reduction. As may be seen from the graphs, the price is a broadening of the

beam. The approximate beamwidths of the four patterns are:

Array Beamwidth (10 C)
(Degrees)

Unshaded 28

Shaded, 20 db 33

Sha-ded, 25 db 36

Shaded,. 30 db 38.5

4. The Near Field

Although a general analysis of the near field of transducers is

beyond the scope of these notes, it will be useful to include a brief discussion

of the behavior of the pressure along the beam axis in the near field. We

have already seen that pressure in the far field varies inversely as the first

power of the distance from the transducer. As we move inward along the

axis toward the transducer, we find that this law gradually begins to break

down. The rate of increase of pressure with diminishing distance begins to

slacken off, and in general a number of oscillations are observed in the

pressure amplitude. These oscillations are due to interference of portions

of the wave from different portions of the transducer surface and are related

to Fresnel diffraction phenomena observed in optics.

The usual example discussed in textbooks is the circular

piston. This is a rather convenient example because it lends itself readily to

a qualitative physical explanation. We shall discuss this example in a rather

rough manner and shall then consider a second type of transducer - the

continuous line.
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We wish to consider,the resultant pissiii at the p6iiit P oi

the axis at a distance r from the center of the transducer. In .particular,

/ ' * -J - - \ -- r---.,

we desire to investigate qualitatively how the pressure varies as the distance

r is varied. Let us begin by drawing an arc of a tangent circle of radius r

with center at P. We next draw a concentric arc whose radius rI is

one-half wavelength larger, i.e.,

rI = r +

and continue drawing arcs whose radii increase in steps of X

r2 = r I + X, etc.

until we reach the edge of the disc. These arcs are traces (in the plane

of the paper) of spherical surfaces which intersect the disc in circles as

shown above, dividing the disc into annular zones. By virtue of this con-

struction, we see that the phase at P of all the radiation originating within

any one zone will have a maximum spread of 180 degrees. Furthermore,

the areas of all the zones are approximately equal. This means that the

resultant pressure due to two adjacent zones will be approximately zer6,

since on the average the separate pressures due to the two zones are
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approximately 180 degrees out of phase.. We may -therefore.cancel the

effects of the zones in pairs.,- -and'the net re3ult will be :roughly equal to

the confributi6n-from-the-ffraction-ofa zone-left over at the edge of the disc.

If, therefore: the distance r has such a value that the dibc

contains an even integral number of zones, the resultant pressure will be

approximately zero. If the distance r is such that the disc contains an odd

integral number of zones, the pressure will be a maximum. We see there-

fore that as r is varied from 0 to infinity, the pressure will exhibit a number

of oscillations equal to the number of wavelengths in the radius of the disc.

At short distances (small r) the pressure fluctuates rapidly with r, and at

longer distances itfluctuates mPre slowly. If a denotes the radius of the

disc, the last zero occurs when r reaches a value such that

or, if r >>a,
r X (748)

Beyond this point a gradual transition to the far field occurs.

Consider now a linear transducer of length -t. The pressure

at a point P at a distance r on the perpendicular bisector of the transducer

line is

j (wt-kr')
p =A rd (749)

where

A = strength of source per unit length

= vrr + slant distance from element d9 to P

= distance from center of line to element dt
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Equation (749) cannot be integrated in closed form, but a

reasonble approximation can be obtained for values of r greater than about

-- y expanding the radical and neglecting powers of t above the second. This

approximation yields

Z~j wt'kr) 2 §2
P = r j - e dt (749a)

0

where from symmetry considerations the integral over the whole line is

replaced by twice the integral over half of the line.

The real part of the pressure is

p = [Gc cos (t-kr) + Gs sin t-kr) (749..'L)
wh ere

-G-e = cos d

G s - 1 - ) sin k9 -

The amplitude of the real pressure is

*YO1

atn (749) cn b

____ c s '-xeZ
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By substitution of

= g i = ' (749.3)

and integration by parts, the integrals Gc and Gs may be expressed in terms

of the standard Fresnel integrals

v 1T fu 2

C(v) = f 2os du (750)
0

S(V) du (750a)
0

The results are
X X r'

G = C( ~ )--.sy 2 .. ) -s 7~r r (750.1)c (7 c( ) + T s(V 77) -Wr 77.7 cos 4,,To.z

Gs C(, + , .i. - (750.Z)
T 7"72" sin -
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The accompanying graph is a plot of the pressure amplitude

(in arbitrary units) vs. distance along the beam axis (expressed in wave-

length units) for a transducer which is 10 wavelengths long, that is,

lox
The approximation we have made begins to break down at ranges less than

7 or 8 wavelengths and cannot be used-below about 4 or 5 wavelengths.

The fluctuations in the pressure field of the linear transd cer are consider-

ably smaller than those of a circular piston. The reason for this is that

instead of annular zones we now have linear segments, and these segments

are not of equal length. Hence only partial cancellation occurs at the

minima.

The dashed curve shows the inverse first power law, which

applies in the far field. This curve represents the pressure which would be

produced by an omnidirectional source having the same far-field pressure

distribution as the linear transducer (along its beam axis). The divergence

between the two curves is a measure of the near-field effect. Because of the

continuous nature of the transition from near to far field, any decision as to

where the far field begins must be somewhat arbitrary. A reasonable
bcdwea, +6e F-I 1s

boundary~for the 10 line would appear to be about 100 wavelengths. At this

distance, the path length from the center of the line is' 100 and the path

length from either end of the line is (100) 2 + (5%)?. The difference in

path length is

(x)+ (5)- - Io× x

As a rough rule of thumb, the far field may be said to begin at a range such

that maximum spread of path lengths from points on the transducer line to

a point on the beam axis is about 1/8 of a wavelength. Applying this

criterion to linear transducers in general, we obtain the following result

for the distance r to the far field
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r -

, (751)

where t, is the length of the transducer. Equation (754) may, in'fact, be

applied to a transducer of any shape, provided t i.6 interpreted a's the maximum

,dimension of' the transducer.

These considerations are important in transdtider calibration

procedures, where measurements should be taken in the far field. We see

that .the required, separation distance increases as the square of the maximum

linezr dimension of the transducer being calibrated. The requirements are

,thus far more severe for highly directive transducers.

5. Directivity Factor; Directivity Index

In the previous discussion of beam patterns we have considered

insome detail the response oftransducers in directions away fromthe beam

axis. It should be noted, howe.verthat the off-axis performance is of interest

largely from a negative point of view. That is to say, the chief purpose of
I

designing directiVity into a projector is to concentrate the energy into a beam

sothatalargerfractionoftheinputpowerisusefullyemployee for detecting

targets and less is lost in stray directions where it generates unwanted

reverberation. Likewise, in a receiving array, directivity serves to reject

noise and other interference arriving from directions other than the target

direction, thereby enhancing the signal to noise ratio. Therefore, to evaluate

the performance of a projector against targets located in the vicinity of the

beam axis it is useful to be able to summarize the directive 6ffe.ct of the beam

pattern in a single number which measures the gain of the system relative to

an omnidirectional projector. Similarly, it is useful to summarize the gain

of a directional receiving array relative to an omnidirectional hydrophone.

The number used for this purpose is called the directivity factor and its decibel
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equivalent is called the directiyity'index. For a projector these quantities

are called the transmitting directivity factor and transmitting directivity

index; for a hydrophone array they are called the receivin directivity factor

and :receiving directivity index. In the analysis which follows we shall derive

formuias for the transmitting Jirectivity factor and directivity index of a

number of different transducer types and shall then discuss briefly their

'applicability to receiving arrays.

It is clear that a directional-projector, by reducing the amount of

radiation transmitted in off-axis directions, tends to concentrate its radiated

power into a beam. Therefore, a directional transducer will generate a higher

intensity at any given distance along its beam axis than an=icbecfiozttir-atrer

operating at the same power level. Or, stated in another way, to produce the

same acoustic intensity at any point on the beam axis, the total acoustic power

radiated by a directional transducer is less than that which must be radiated

by an omnidirectional transducer. The ratio of these amounts of power is the

gain of the directional transducer. The directivity factor is sometimes defined

as this gain, (a number greater than I) and sometimes as the reciprocal of the

gain (a number less than 1). We shall use the latter definition. Let us define

an "equivalent omnidirectional transducer" as an omnidirectional transducer

which generates the same far-field acoustic intensity as the directional trans-

ducer generates along its beam axis. Then the directivity factor d is defined

as follows:

d = Total acoustic power of directional transducer (752)
Total acoustic power of equivalent omnidirectional transducer

and the directivity index D is
I

D =10 log = -10 log d (753)

The distance at which the intensity is measured is immaterial,

so long as we use the same distance for both transducers. We may therefore

use any distance r, it being assumed, of course, that the far-field directivity

pattern applies. If the intensity at this distance is Io, then for the

omnidirectional transducer the intensity is constant over the entire surface of
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-0 4= 4-r-Io (754)-

f11

For the directional transducer the intensity varies over the sphere in accord-

ance with the beam pattern, being proportional to the relative transmitting

.(intensity) response, which is equal to the square of the relative pressure

response. The total power is therefore

P -10('Lpo I dS (755)
P L Po

where dS it an element of area, and the integration is carried oul ov.er the

entire surface of the sphere surrounding the transducer.

In two dimensions the angle 0 in radians subtended by an arc of

length s of a circle of radius r is

I O = s(radians)

Similarly in three dimensions the solid angle 0 subtended by an areaS of a
F sphere of radius r is.

S
= ' (steradians)

We may therefore replace the element dS by

dS = r' dE2

Inserting this into (755) we see that the directivity factor (752) is

d = -- , c1" dO (756)
41r Po

a. Two-Spot Arra

In the coordinate system we hav e used for linear arrays

the angle 0 is measured from the equatorial plane and ranges in value from

"/- to + Ir/2. The element of solid angle is

dR = cos 0 dO d4 (757)

Inserting the pressure response function (712) for a two-spot array, we obtain

for the directivity factor
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Fo

r
d11

d= , , COsa4 cos eded (758)
0

IT

where = sin 0

or cos OdO = d'

Since the integrand is independent of and ;- symmetric in 0, we may

integrate immediately over d and replace the 0-integral with twice the integral

from 0 to rf2. Changing variables from 0 to p, we obtain
ira
T

d cos? 2 dqj

Ira
d -"+ ,(I + cos U) d(

or sin 2r a
d l (759)

2,ra

As is to be expected, the directivity factor is a function of

the spacing, a, of the two elements. If the spacing is very small, that is,

if

a<<X
sinx

the "sinc" function (s-) is approximately 1, so that d;l and DO db, and the

array behaves as an omnidirectional transducer.

As the spacing is increased, the sine function decreases in

value and the directivity index begins to build up. At a spacing of one half

wavelength, where
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i I is --  sin r =0

we see that d = land D = 3 db. As the spacing is further increased, the
aA

directivity index reaches a maximum value of 4. 1 db at

4. 493 oX a=0.715 X

Beyond this point the directivity index a curve of D vs. a shows a series

of damped oscillations about its average value of 3 db.

b. Multi -Spot A-r

The most useful form of the relative pressure response of

a multi-element linear array for the computation of the directivity factor is

the exponential form (715). As noted previously, this function has a slightly

different appearance, depending upon whether the number of elements is odd

or even. Equation (715) assumes an even number. At the outset we note that 4

the integrand is independent of and is-symmetric in 0, and 'hat it is

expeditious to change the variable from 0 to 4. When these operations are

carried out, we obtain
ir a

n, I (n-I)ji (n-3)j7-, + -j+dJ=L + +... + + e +..
0

-(n-Ij}r +e dI

d X fZ(n-l)j, +Ze2(n-2)j,+. + (nm)emJ +.
0

+ (n-l)e2 h + n + (n-l)e 2js + + (n-m)e2mj + ..,

d 4 -e 2

nL 2n(n--,- 2(n-.2)j

-MA aamjq e2j 4j

- + (n-m)e j  -+ e + n
2mj 2j
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This expression may be written in the following compact form

2irma

n-1 sIn2_..a

d s+ nm) ir-ma (760)

It is readily seen that this formula boils down to (759) when n =2.

The same general comments apply to the directivity factor
of the multispot array as were made for the two-element array. If a is very

small compared with X, we see that d is approxima:ely

n-l
I + -2 E (n- 'n)
n n i=

I + n(n-l 1
n-- + - ln nZ 2

and the array acts as an omnidirectional transducer. Whenever the spacing

between elements is an integral number of half wavelengths, all the sinc

terms are zero and the directivity index is

D = 10 logn (761)

As the spacing is increased, the directivity index executes a series of damped

oscillations about the value given by (761).

c. Continuous Line Transducer

The relative pressure response for a linear transducer is

given by (721). Insertion of this function into (756) gives

2 7r

j~~~~~~ 21r ~,~(.kZcsddII d , I cos Od~d+

2

TTf

0
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this integral may bd reduced by integration-by parts, yielding

Si r . 7r \

d= X (761)

= r T__

where Si(x) is the sine integral

Xi

Si(x) d (762)
0

If the length - of the array is greater than about one wavelength, the sine

integral is approximately

Si(x) COs X (763)
2 x

so that the directivity factor is approximately

d ( "  (764)

This formula is excellent for most linear transducers of practical interest.

For rough calculations a still simpler formula may be

obtained by neglecting the second term of (764), yielding

d u(764a)

and D 7 10 log (765)

For transducer lengths greater than a wavelength the error in decibels intro-

duced into the directivity index by this last approximation is approximately
0.4%

Sd. Circular Piston

The circular piston transducer differs from the linear types

discussed above in that its beam axis is a single line normal to the piston face.

As noted previously, it is desirable for this type of transducer to measure the

angle 0 from the pole instead of from the equator, so that the element of

solid angle is

dT= sin 0 dO d (766)
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In designing transducers of this type it is usually desirable to concentrate

the radiation in the forward direction (0 = 0) by providing a baffle in the

rearward direction (8 = 1800). In practical sonar transducers it is

impossible to prevent the side lobes from spreading into the rear hemisphere,

although the desired condition can be approximated in large arrays. In the

oresent discussion we shall mate the assumption of an ideal infinite baffle

which confines the entire sound field to the forward hemisphere. Under

this assumption the general formula for the directivity factor of an area-

type transducer is
iT

1 2 27r
Po = sin dOd#b (767)

Substituting (728b) for the circular piston, we obtain
IT

d = f [Z' ) .j 2" sin 8d}d+ (768)
0

2Iwa
where = sin 0

This integral has been evaluated, and the result is

2Tra

d = 1)-1(769)'2v a 21t__a

If the radius a is larger than about half a wavelength, the second term in (769)

is relatively small and the directivity factor is approximately

d ; (770)

It will be noted that since the area of the piston face is

A = wa z

the directivity factor may be expressed in the form

d = V -- (771)
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e. Rectangulir Plate

The directivity factor of a rectangular plate of dimen-

sions -And w is (assuming again an infinite baffle)

dr sin & sin I fw( )z sin. OdOd (772)d __-_S *
o O

where

= sin0cos

= w-sin 0 sin

This integral does not lend'itself readily to evaluation. However, we can

obtain an approximate solution for the special case where the dimensions

and w are large compared with a wavelength. Let us change variables as

follows

x = sin 0 cos

y = sin 0 sin

If 46/ and w/X are large, then both sinc functions in (772) will drop to

small values before 0 becomes very large. Since the integrand becomes

extremely small at large values of 0, we may replace Yr/2 with - in the

upper limit of integration. The corresponding limits of integration for x

and y are - cto + 0. The element of area is

dx dy = dO d+

= sin e cos OdOd+

Since we are inter es:ed only in small values of 0, we may replace cos 0

by 1. Substitutions of these approximations into (772) yields
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1 0 sin , sin

d dxf) dy

which integrates to

d (773)

Note that the product Lw is the area A of the transducer face, so that once again
we find

XZ
d = (771)

It has been found that (771) is a good approximation to area-

type transducers of any shape, provided none of the linear dimensions is less

than about two wavelengths.

We noted earlier that the beam pattern of a rectangular trans -

ducer is related to the patterns of two linear transducers of lengths L and w, at

right angles to each other. It is of interest to compare the directivity index of

the rectangular transducer with those of the lines, Let Dtw refer to the

rectangular plate and DL and Dw refer to two lines. Then, approximately,

4 rLw

Dtw 10log(-j

Dt. 10i log (-

Dw 10 log( 4 )

Therefore

Dtw = D+D w + 1 0 logTr (774)

or

Dtw = D4+Dw+5 db (774a)

The directivity index of the plate is about 5 db larger than the sum of the

directivity indices of the crossed lines.
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f. Eff ec t. Qf Shading

The reduction in side lobes due to shading would be

expected to increase the directivity index. This effect, however, is more

than comp.ensated by the broadening of the beam. To investigate this effect,

let us go back to the earlier example of a 6-element linear array with

Chebyshev polynomial shading. Going back to (741), let

aj Ai i-l, 3, 5 (775)
Al + A3 +A5

Integration of the complex exponential equivalent of (741) in lieu of the

cosine form yields
2Tra

sind= 2 z + a3 +a52 + (al?+ 2al a3 + 2a3 a5)

4Tr a 6nra 8w asin4 sin 6a sin

+(Zal a3 +2al a5) a + (a 3
2 +.2al a 5 ) - +2a 3 a, 8__a

6ir0a 5 8ir

sinIOwa]

+ a5
2  X (776)

I Or a
In our previous numerical example we selected a spacing of one half wave-

length
x

For such a spacing, all the sinc terms of (776) vanish, leaving

d (a, +a a3 + a5Z)
d 3

Numerical calculations for the cases discussed previously yield the following

values of directivity index
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Array. db

Unshaded 7.78 I
Shaded, 15 db 7.75

Shaded, 20 Ab 7.53

Shaded, 25 db 7.2.6

Shaded, 30 db 7.02

6. Noise Rejection by Dir!-'.-Uinal Hydrophones and Arrays

At the outset we must distinguish between two different types

of noise - (1) noise originating from a single discrete source, and (2) general

ambient noise present in the sea. Noise of the first type arrives at the

hydrophone as a plane wave traveling in a specific direction, or at most a

small angular spread of directions. The sensitivity of the system to noise

of this type is determined by the deviation loss in the direction from which the

sound is coming, For example, in the case of a helicopter dipped sonar the

noise generated by the vehicle arrives at the transducer from a small

angular region about the vertical. The effect of this noise in interfering with

horizontally arriving signals is determined by the deviation loss of the trans-
ducer in the vertical direction.

Our primary concern in this section is with the general ambien,

noise present in the ocean. The bulk of this noise originates from a very

large number of sources distributed throughout the surface of the ocean and

the near-surface region. For this reason the noise arrives at the receiving

transducer not from any one direction but from a continuous distribution of

directions. In describing the noise intensity (or, more accurately, intensity

per unit band), it is useful to introduce the concept of intensity_ per unit solid

angle Because of the continuous distribution, the amount of energy traveling

in any discrete direction is zero; the amount traveling in cone of solid angle

d1 is proportional to dQ.

Let Jg (0, ) represent the intensity per unit band per unit solid

angle arriving from the direction (0, ). Then the intensity per unit band
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arriving from a small cone of solid aile dil is-.JI(O, ) aM. The total noise

intensity p6rOunit band received by an omnidirectional hydrophone is"

Jo= J(e, 4) d (777)

where the integration is carried over the entire sphere of unit radius sur-

rounding the hydrophone. In the special case of an isotropic noise field,

where JU (0, ) is a constant independent of 0 and , we see that

Jo = = 4, J(
or

1
= Jo (778)

Thus for an isotropic field the intensity per unit band per unit solid angie
I(that is, per steradian) is equal to- times the overall intensity per unit

band measured by an omnidirectional hydrophone.

If now we consider a directional receiving array, we see that

the effect of the noise arriving from the small cone of solid angle &2 in the

direction (0, +) is modified by the relative receiving zesponse of the array in

that direction,1Th.'effective-noise per unit band sensed by the array is thus

Jeff--[ i JQ (GS +) dQ (779)
C 0

where, as before, the integration is carried out over the entire sphere.

The ratio of the total noise as sensed by the directional array to the total

noise as sensed by an omnidirectional hydrophone is

Jeff Jj- (0, +) (

Jo, J3 (0,) dQ2

From (780) it is apparent that the gain in noise rejection by a. directional

transducer relative to an omnidirectional transducer is dependent upon the

directional properties of the ambient noise field. In the special case of an

isotropic noise field, where J,(O, +) is constant, equation (780) reduces io

Jeff I i de(,_) 2 (781)Jo 4w eo d
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which, when compared with (756) is seen to be the receiving directivity factor

of the array. In other words, the directivity factor and directivity index

apply to a receiving array only when the array is operating in an isotropic

noise field. If the field is isotropic, the effective noise intensity per unit

band sensed by the directional array is less by a factor d than the intensity

per unit band sensed by an omnidirectional hydrophone

Jeff = d Jo (782)

and the corresponding effective spectrum level of the noise is

Neff = No- D (783)

where No is the spectrum level corresponding to Jo.

If the noise field is not isotropic, equation (783) is not valid,

and the effective noise sensed by the transducer should be computed directly

from (779). Noise is normally expressed in decibels. Ideally a directional

field should be described in terms of spectrum level per unit solid angle,

which we shall designate as
N r2 (0, d ) in db// bl/cps steradian

To evaluate the effect of the noise on a directional transducer, we may

express Jo (8, 4) in (pressure)z units by the relation

Ja2 (e,4) = 100. 1N(e ) (784)

Values of J 2 (8, 4)) are then substituted into (779). The integration must

usually be carried out by numerical methods. The effective noise level is

Nef! = 10 log Jeff (785)

The experime, .*al determination of the intensity per steradian

j- in a directional noise field is not a simole matzer. If an ideal hydrophone

array could be built which had a very narrow beam covering a small solid

angle AQ2, without side lobes, then the intensity per unit band per steradian

could be obtained by dividing the observed intensity per unit band by APt

JO
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-In practice, however, the beam does not have a sharply defined cut-off, .nd

side lobes -are always present. The analytical process of estimating the

true field from measurements by practical transducer arrays is complicated and

will not be discussed in these notes. Considerable work of this type has been

done in the field of -radio astronomy.

Measurenfents made at great depths in the ocean-have -revealed

a considerable angular dependence of ambient sea noise in a vertical plane.

The highest intensity is received from the vertical direction. The intensity

received horizontally many be as much as 18 db down, depending upon the sea

state and the frequency. The directional effect increases with increasing sea

state. A transducer array having a horizontal beam will experience a lower

ambient noise background when operating at great depth than when operating

near the surface.

7. Reverberation Factor: Reverberation Index o

Although the subject of reverberation will not be discussed

until later, a brief account of the effect of the directional characteristics of

transducers upon the received reverberation will be given in this section. We

shall restrict our atteniior to the ideal case of voAune revebcraLion in an

infinite homogeneous ocean. It is assum.d tnat when a ping is sent out by the

transducer, every cubic yard of water'scatters back to the transducer a

constant fraction of the incident acoustic radiation. Considered as a function

of the direction in space relative to the beam axis, the intensity of the

incident radiation over a sphere surrounding the transducer is proportional

to the relative transmitting response i, 4). Since the returning reverberation

comes in at the same angle as the outgoing radiation which caused it, the

effcct on the receiving array is proportional to the relative receiving response

;I'(, *) Thus, the overall effect of the reverberation is proportional to the

product of these two functions The reverberation factor is the integral
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of this combined relative response over the sphere,

1 1

dR = -- ff -q (0,4) 11(e, ) d0 (786)

The reverberation index is the decibel equivalent of dR,
1

DR = 10 log (787)

If we assume that the transducer is reversible, then

q (0, T1' (o, ) f (0e,)

and

dR = 4 f dQ (788)L PoJ

We shall apply this result to two representative cases, the

continuous line and the rectangular plate. For the continuous line we obtain

2R = , fsin )P cos 0dO d
TO

2 7r

0

-- d (789)

Successive integration by parts leads to the expression
-4.. irr -

dR = 3-T Si -si(--) -S i(6 sin 8 sin)

z -X3 Tr rr 4- 2 (k-z sin -- cos k (-) sin (789a)

When the transducer is more than one or two wavelengths long this formula

may be approximated by

dp ;ut (789b)
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The approximate reverberation index is 4

DR ,- 10 1og-9

zt, 310 log- + l0 log.3

D + 1. 76 db (790)

Thus the reverberation index is larger than the directivity index by about

1. 8db.

A similar approximation may be obtained for a rectangular

plate, the result being ;
k

d "gA (791)

2 9
DR C 10 log + 10 log 9-

D + 3.52 db (792)

As a rough rule of thumb the re verberation index is about

1. 8 db larger tLhn the directivity index for transducers whose beams are 4

spread cut over the equatorial plane (for example, linear transducers) and

about 3. 5 db rr for transducers with a searchlight pttern (foi example,

circul..r pis~oi, o.nd rectangular plate).

8. Caoture Area

When a transducer is used as a hydrephcne the input power is

obtained from the acoustic radiation. The maximum power which can be

obtained from the radiation is called the available powe,-. It is obtained

when the waves are coming in the direction of the maximum response axis.

Since the acoustic intensity is a measure of the power per unit area, the

available power must be equal to the pioduct of the inersity by the effective

avea of the hydrophone, which is called the capture area, Ac.
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For a hydrophone which is in the form of a plate -whose

dimensions are large compared to the wavelength of sound, the capture

area is approximately equal to the actual area of the plate. This area is

related to the directivity factor and the wavelength by equation (771). Thus

Xz  cz
Ac = 4--. a a(793)c 4-trd 41Tfz d

It has been found from radio antenna theory that equation (793)

yields approximately the correct value of the capture area for all types of

antennas; it likewise yields approximately the correct value of the capture

area for all types of acoustic hydrophones. The capture area is equal to

the actual area only for hydrophones having a relatively large area. For

othei types this is not the case.

Let us consider two examples. First, a linear hydrophone,

The directivity factor, according to (764a), is approximately

x
d - - V

Therefore the capture area is

A 2t, Xt (94
Ac - - (794)

The capture area of a linear hydrophone is proportional to the length and

inversely proportional to the frequency.

Second, an omnidirectional hydrophone. The directivity index

is by definitiQn iwnity.

d=1

Therefore the capture area is

Ac cZA c c (795)

The capture area is inversely proportional to the square of the frequency and

is independent of the actual area of the hydrophone.
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TECHNOLOGY OF UNDERWATER SOUND
(REVISED NOTES)

TRANSDUCERS kcontinued)

C. Thermal Noise.

1. Introduction.

In the detection of acoustic signals the sonar operator must

always compete with background interference. Some sources of interfering

noise can be controlled to varying degrees; others, such as ambient sea K

noise, depend on meteorological conditions and other accidents of nature.

Even though under ideal conditions it is conceivable that all these sources

of noise might be reduced to negligible proportions, there is one basic factor

that sets a lower limit below which signals cannot be detected. This factor is

thermal agitation.

According to the kinetic theory of matter, all the elementary

particles of which matter is composed are in a continual state of agitation.

This energy of agitation is proportional to the absolute temperature. In a

gas each molecule possesses on the average an amount of energy equal to

znko TK

where

n = number of degrees of freedom per molecule

S Ik o = Boltzmann's constant = 1.371 x 10
- 16 erg/* Kelvin

.= I371 x 10-23 joule/ *Kelvin

Tk = absolute temperature in degrees on the Kelvin scale
(= 273. 2 plus Centigrade temperature)

The simplest molecules are those of the inert gases, like neon,

which consist of a single. atorm. These molecules possess three degrees of

freedom by virtue of their translational motion in three dimensions. More

complicated molecules may have rotational and vibrational degrees of

freedom in addition to the three translational degrees of freedom. The

theorem of equipartition of energy states that on the average the energy of a

molecule is equally divided among all of its degrees of freedom.
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As a result of the pioneering work of J. B. Johnson and

H. Nyquist of the Bell Telephone Company, and the developments of

statistical theory which have grown out of their work, the concepts o cI~s;c'-
A h--Vebeen extended to broadband random processes in general and

thermal noise in particular. If, for example, we consider the noise voltage

generated in a resistor by the thermal motions of the electrons of which it

is composed, we find that this is a typical broadband random process.
Suppose this noise is filtered through a bandpass filter having a bandwidth

W. It has been shown that if this voltage, considered as a function of time,

is sampled at a rate not exceeding samples per second, these samples

are statistically independent random variables. The maximum number of
statistically independent samples which can be obtained in any time t is

2 Wt. Each independent sample may be considered as equivalent to a degree

of freedom. By the equipartition theorem, the total thermal energy generated

by the electrons in the resistor in a bandwidth W in time t is

!(2Wt)koTK = Wtko TK

The average thermal power generated in the resistor in the frequency band

of width W is the energy per unit time,

Pth = k o TKW (801)

and the average power per unit band is
Pth

Uth - - k ° T K. (802)

To compute the rms noise voltage in the band W, we picture the resistor

as being equivalent to an a. c. generator having

R
eth

an emf whose rms value is the thermal noise voltage eth and whose inte;nal

resistance is the resistance R of the resistor under consideration, The value

of eth is such that the available power from this equivalent generator is equal

to the thermal power of (801). The available power is the maximum power
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V vWhich can be drawn when the load iinpedance is niatched.to the source

impedance. The actual power which is drawn from a power source depends

upon both the load impedance and the internal impedance of the source. If

the source and load impedances are

zs = Rs + j Xs

zL = RL+j XL

the "'ns current is

E(Rs + RL)Z + (Xs + XL)

and the power delivered to the load is

ez Ri,
PL= iz RL = (803)., (Rs + RL) z + (Xs*XL)r

If the impedance of the source is fixed, the maximum output power is obtained

by matching the load impedance to the source impedance. The optimum values

are obtained by taking the derivatives of PL with respect to R L and XL and

setting these equal to zero. Thus,

6pL e? 2 (Rs+RL)ez RLS-L - -Z - 0
-R Z

aPL 2(Xs + XL)e Z RL
X " -L :" Z4

where Z - (Rs + RL)2 + (Xs + XL)z

These equations solve to

RL Rs (804a)

XL= -X s  (804b)

The maximum power is drawn from a generator when' the load impedance is
f the complex conjugate of the source impedance, that is, when the load

resistance is equal to the source resistance and the load reactance is equal to
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L the negative of the source reactance (inductive vs. capacitance, or vice versa).

In this case the overall circuit is purely resistive and half of the power

generated by the emf is dissipated in the internal resi ance and half in the

load resistance. Substituting (804a) and (804b) into (803), we see that the

maximum load power, or available power from the source, is j
PAvl -e (805)

jim 4Rs

In the case of thermal noise in the resistor R, (805) leads to

the following

ezth
Pth = ko TKW 4R

or

eth = f4R ko TK W (806)

2. Thermal Equivalent Water Noise.

Thermal agitation affects a hydrophone in two ways: (a) the

molecules ot water, which are constantly in motion, strike the hydrophone in a

random manner and generate a noise voltage; (b) the electrons in the electrical

circuit elements of the hydrophone experience thermal agitation and generate

noise in the circuit.

The thermal agitation of the water molecules is a basic property

of the medium and its effect upon a hydrophone is most conveniently described

in terms of a hypothetical equivalent acoustic wave which, when received in

the conventional manner by an omnidirectional hydrophone, produces the same

electrical output as the molecular motions. The total power per unit band

received from the water is the same as that generated by the load resistor in

the equivalent circuit of the hydrophone, its value being given by (802). The

thermal equivalent intensity per unit band, Jth, is that value which, when

multiplied by the capture area of the hydrophone, is equal to the thermally

generated power per unit band

Jth Ac Uth (807)
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The capture-area of an omnidirectional hydrophone is given by (795)

c
z

Ac - -, (795)

Hence Tl ~ 4 f? ko TX .88

Jth cz -,(808)

If the Boltzmann constant is expressed in joules/ °K, c in cm/seci and f in

cps, then Jth is in watts/cmZ cps and the thermal equivalent spectrum level,

Lth is

Lth 10 log Jth
c 2

= 20 log f - 10 log 4' ko TK db//watt/cm cps

(809)

As a numerical example, if the water temperature is 60 °F, so that

TK = 288.7 °K, the thermal equivalent spectrum level is

Lth 20 log f - 296.5 db//watt/cm2 cps (810)

or

Lth= 20 log f - 174.6 db//pb/cps (810a)

The thermal equivalent spectrum level increases with frequency.

Ordinary ambient sea noise, caused chiefly by the action of wind and waves,

decreases with frequency. In the frequency range above a few hundred cps,

ambient sea noise is described by the Knudsen curves which relate the

spectrum level to the frequency and the sea state. These curves are based on

measurements made during World War II. Although some more recent measure-

mentc have shown considerable variability in ambient noise levels, the

Krudsen curves are still widely used. Dr. H. 0. Benecke, while at the

Naval Air Development Center, fit the Knudsen curves with an empirical

formula

Lamb = -54+30log (n s + 1) - 17 logf db//pb2 /cps (811)

where n$ denotesthe sea state and f is the frequency in kc/sec. (The frequency

in (810) is in cps.) Comparison of (811) with (810a) shows that the ambient

noise is equal to the thermal noise at 60"F when
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S37 logf - 60.6+30 log (ns+l) nK

or, when f has the values listed below

Sea'State Frequency
(kc/sec)

0 43
2 i05
4 160

6210

In the range of frequencies of interest in most sonars the thermal noise

level is well below the other noise encountered in the sea.

If the transducer has directivity, the effect of the thermal agita-

tion relative to signals received along the maximum response axis is reduced.

The general formula for the capture area is (793), which includes the

directivity factor d. At any given frequency the capture area of a directional

transducer is larger than that of an omnidirectional transducer by a factor d.

The thermal equivalent intensity per unit band in this case is
4 . f2 ko Tkd

Jth = cz  (812)

and the thermal equivalent spectrum level is

c2

Lth = 20 logf - 10 log - D (813)

where D is the receiving directivity index of the transducer.

3. Thermal Equivalent Hydrophone Noise.

Thermal noise originating in the electrical circuit components

of the hydrophone appears directly as noise at the output terminals. If we

wish to express this noise in terms of an equivalent acoustic wave in the

water, we must take into account the efficiency of the hydrophone. In the

previous discussion -- were concerned only with replacing the actual thermal

noise in the water with an equivalent noise. Both the actual and equivalent

* noise sources were located at the mechanical input to the hydrophone and both

suffered the same efficiency loss in the transformation from input acoustic

to output electrical power. Now, however, the source of the noise is electrical,

and we are replacing it with an equivalent acoustic source. In order that the
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a'tou -ic power be truly equivalent, we

must multiply it by the efficiency before setting it equal to the internally

generated noise power. Let -1 A denote the acousto-electri3 efficiency and fI
let NAE be the corresponding loss in decibels

NAE = -0 log '1AE 1(814)

Then if Jt is the thermal equivalent intensity per unit band corresponding

to the internally generated thermal noise, or transducer equivalent intensity

per unit band, we have
3t J' Ac  .

,th A9AE Uth

or 47 fz ko Tk d (85ithcz (815)
Vth - AE

and the transducer equivalent spectrum level is

=10 log .th

0= 09 f+NAE - D- (816)

For satisfactory performance it is desirable that the overall

thermal equivalent spectrum level (including the thermal effects of both the

water and the internal electrical components) be at least 10 db below the

ambient noise level.

D. Calibration of Transducers

This section will be limited to a brief discussion of some of the

principles involved in transducer calibration. A description of the hardware

and operational procedures employed in transducer calibration stations is

beyond the scope of these notes.

Calibration measurements are made for a number of different

purposes, such as to determine beam patterns, frequency response, and

sensitivity. For many of these purposes, such as the determination of beam

patterns, only relativ, measurements are required. However, the determina-

tion of sensitivity requires absolute measurements - that is to say,

measurements of the relationship betwee,, the electrical input and acoustical

output of a projector, and the relationship between the acoustical input and
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electrical output of a hydrophone. In routine operations, such measurements

are made relative to a calibrated standard transducer. Thus, although the

routine measurements are in this sense relative measurements, they depend

ultimately upon the absolute calibration of the standard. Absolute measure-

ments are made by a method which is based on the reciprocity theorem, which

we shall discuss shortly. Before ding this, however, we shall introduce a

little background material.

I. Transducer Sensitivity.

The transmitting sensitivity of a projector is the ratio of the |

free-field pressure produced ar a secified distance from the transducer to the

input electrical current.

Free-field rms pressure at distance r 1
ST Input rms current (8.1)

Because of the spreading of sound waves the sensitivity is a function of the

distance r. In these notes we shall make the following Assumptions:

(1) For a directional transducer we shall consider pressure to be

measured on the bean, axis.

(2) We shall consider only the far-field response.

The term "free -field" signifies that the pressure is due to the

outgoing wave alone, the field being free of reflections from any bounding

surfaces.

For the purpose of standardization, the sensitivity should be

referred to a standard distance, such as 1 yard. Actual measurements, of

course, must be made in the far field (or suitable corrections must be

applied to near-field measurements), and the conversion to the 1 yard rae.,r-

ence distance is made by application of the spherical spreading law.

In the CGS system the transmitting sensitivity is expressed in

1b ampere, and in the MKS system in (newtons/mz)/amperewhere

I newton/mZ = 10 Pb

The sensitivity is also frequently expressed in decibels. Since

the power is proportional to the square of the pressure and to the square of

the current, the sensitivity is 20 log ST, in db referred to 1 pb/amp or

1 (newton/m;/aMp.2.: 297



The receiving sensitivity of a hydrophone is the ratio of th 6

open-circuit output voltage to the free-field pxessure at the location of the 41
hydrophone

Outp -, cpen-circuit r'ms voltage-(2Z
SR = Free-field rms pressure

Here we assume that the pressure is due to a plane wave ar-iving in the

direction of the beam axis. Also, it should be noted that in general the

[ ~ presence of the hydrophone alters the sound field. The pressure appearing

in the definition (822) is understood to be the pressure which would exist if

the hydrophone were not there. Expressed in decibels the receiving sensi-

tivity is 20 log SR, in db referred to a volt per microbar or a volt per
Ilk

newton/mz, depending on the system of units.

2. Pressure Due to ;- Sin.ole Source; Extended Source

At this point we shai *:xtend our earlier discussion of spherical

waves. The pressure and particle velocity of a spherical wave was expressed

in tern-s of an arbitrary constant A in equations (136) and (138). Let us now

assume that the spherical wave Is generated by a small pulsating sphere of

mean radius a, such that
a < < X (823)

Let the rate of change of the radius, that is, the radial velocity, be I
u = U eJwt (824)

At the surface of the sphere, the particle velocity of the water must be equal

to the velocity of the spherical surface. Therefore, when r = a., equations

(138) and (824) yield

A I -jka
p c-- -- ) e

_ A- (j -ka)(1 -j ca +. ) (825)
27n-

But from (823) we see thtat, since k = -,

ka < < 1 (823a)

If we neglect ka in comparison with 1, we obtain

A = jpcka2 u (826)
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Let us now express U in terms of the rate of change of the r -i
volume of the sphere. The amplitude of the pulsation is the integral of

(824), so that the volume of the sphere is

v= __ (a +-.I ejw t )3 (827)

Since the amplitude U is assumed to bc small compared to a, we may retain

only the first power of U in the expansion of (827)

4Tr a3  4Tr aU jwt
V = - + . (827a)

Let
e jwt dV

dt

Then Q = 4wa U ( 8)

The quantity Q is called the volume velocity of the sphere.

Note that (828) could have been derived directly by observing that for small

amplitudes the volume velocity is the product of the linear velocity and the

area of the spherical surface. Substitution of (828) into (826) yields

A = jpck 0 - jpc (829)
41r Z%

Ihe acoustic pressure at a distance r (136) is then

j* icQ j(wt-kr)
2 P - e (830)

The small sphere v hich generates the pressure field (830) is

called a simple source and the volume velocity Q is called the strength of the

source.

If we now consider an extended source consisting of a radiating

surface of finite area, we may break up the surface into elements dS, as we

did in deriving beam patterns, and treat each element as a simple source.

The general expression for the pressure is then
e (wt -kr')

S, e rl Un dS (831)

where r' is the distance from the element dS to the point at which the pressure

is computed and Un is the component of the velocity amplitude normal to the
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surface. If we restrict our attention to a point on the beam axis in the far

field, then r' has a constant value r for all elements of the surface and

p = jPc e j(wt-kr) UndS (832)
2xs

In this case the pressure along the axis is equal to that produced by a simple

source of strength

Qs = Un dS (833)
5

3. The Reciprocity Theorem

The relationship between the transmitting and receiving

sensitivities of a reversible transducer can be determined from an applica-

tion of the reciprocity theorem stated by Lord Rayleigh iii his classical work,

The Theory of Sound. The theorem states that in a linear network, if we

observe the output in branch B caused by an input in branch A, and if, on

the other hand, we observe the output in branch A caused by an input in

branch B, then the ratios of the outputs to their respective inputs will be

equal.

To apply this theorem to the calibration of a transducer, the

network under consideration consists of the transducer plus the acoustic

medium out to the point P at distance r. Let branch A be the electrical

terminals of the transducer and branch B be located in the medium at the

point P. The inputs and outputs are as follows:

Input A: Electrical current

Output I: Free-field pressure at P

Input B: Simple source at P

Output -A: Open-circuit voltage at terminals

Let the following quantities refer to rms values:

I input current

p' = free-field pressure at P due to I

Q strength of s.mple source at P
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p = free-field pressure at transducer, due to Q

E = open circuit voltage due to p (and hence to Q)

Then the sensitivities are

ST p (834)i ST

sR E (835)3 S p

and the reciprocity thereon states

p E (MKS system) (836)

4 Although we shall not prove the theorem, a few words of

explanation may be useful. When the transducer is used as a projector, the

power is applied at the electrical terminals. At the other end the source is

removed and the free-field pressure is the "open-circuit" output. When the

transducer is used as a hydrophone, the input power is applied acoustically

at the simple source Q; the electrical power source is removed, and the

output is the open-circuit voltage. We have previously considered an electro-

acoustic network in which force and linear velocity were the analogs of voltage
and current. Here the corresponding quantities are pressure and volume

velocity. A check of the dimensions in (836) will show that both products El

and p'Q have the dimensions of power. A more careful check of the units

reveals the following.

The product EI (volts x amperes) is expressed in watts.

The product p'Q has the dimensions of force/area times volume/

sec, which is force x velocity. In the MKS system

1 newton x l meter/sec = I watt

In the CGS system

1 dyne x cm/sec 1 erg/sec 10 - 7 watt

Therefore, the reciprocity relation, as expressed in (836) is valid only in

the MKS ystem. In the CGS system it must be replaced by

P 107 (CGS system) (836a)
IQ
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From here on we shall assume the CGS system and shall use (836a).

We are now in a position to relate the sensitivities ST and SR.

The pressure generated at the transducer by the source Q is given by (830).

If we consider p', I, E, and Q to be rms values, then, since the absolute

value of the complex exponential is 1, or

jeJ(wt kr)=

i the rms pressure is
PcQ

p -

so that 107 P (3p'_ I07 p '

Insertion of (834) and (835) yields
10 7 PC

ST - cSR
2%r

or

~ 5 T (838)
;. S R =J S T (88

where
2 x 10 "7 Xr cm 4 sec% J =(839)

pc gm

The constant J is called the reciprocity parameter.

It is seen that the reciprocity parameter depends only upon the

wavelength X, the distance r at which the transmitting sensitivity is measured,

and the specific acoustic impedance pc of the medium. For all transducers for j
which this relation holds, the ratio of the sensitivities is independent of the

transducer parameters.

4. Direct Calculation of 3 for Quartz Crystal Transducer.

As a check on the general theorem stated above, let us calculate

, the transmitting and receiving sensitivities of the ideal quarter-wave quartz

crystal transducer which was analyzed previously. The equivalent circuit of

the transducer as a projector is reproduced below.
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The impedance zo is the blocked impedance consisting of the clamped

capacitance CO shunted by the leakage resistance R o . The mechanical

impedance z~n includes all the motional characteristics except the radiation

resistance Rr. The previously defined mechanical impedance zm includes

Rr, so that'

zm = zL + Rr (840)

The relation between the velocity amplitude U of the crystal

face and the amplitude of the input voltage E is given by (628) which may

be written as

U= ZE (841)z m' + Rr

The relation between the input current and voltage is given by (648), which

may be written as
+I- (842)

zo Zn + Rr

Inserting (842) into (841) we obtain

4)1 +Rro (843)
U=.T9 zo+ zL R

To compute the pressure at a point a. a distance r on the beam axis, we

make the following assumptions.

(i) The area S of the transducer is a plane and its dimensions

axe large compared to a wavelength.

(2) The point at which we desire to know the pressure is in the

P far field, so that the distance r is constant for all points on S.

(3) The transducer is mounted in an infinite baffle, so that all

radiation is confined to the forward hemisphere.
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With these assumptions the pressure is equal tb twice the

value given by (832). If P denotes the amplitude, so that

p = Pe jwt

then
p = jpc US e -j kr (844)

The transmitting sensitivity is obtained from (843) and (844)

ST P Cs z (845)ST i-=%r $z o+ Zjn + R r

The equivalent circuit for the measurement of receiving

sensitivity is as follows

where F is the amplitude of the force exerted by the water on the transducer

face,

F = P'S (846)

and P' is the pressure at the transducer face. P' is not the free-field

pressure, because of the disturbance caused by the presence of the trans-

ducer. Looking in at the acoustic input terminals, we see that the circuit

is a series combination of a mechanical impedance -.2 and an equivalent

impedance 1 zo . Hence the relationship between P' and the velocity amplitude

U of the face is

I-S'- (Z z 0 + Z )U (847)

and the output open circuit voltage amplitude 3s
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E P -PIS r -
_ zo P's (848)

We must now relate P' to the free-field pressure P. In

accordance with our previous assumptions we may treat the incoming wave

as a plane wave arriving in :a direction normal to the surface. In order to

satisfy the phase relations in the transducer there must be a reflected wave,

which we assume also to be planar.

The free-field pressure P is the pressure of the incident wave.

The driving pressure PI is the su~m of the pressures of the incident and

reflected waves. The velocity of the surface is the (algebraic) sum of the

particle velocities of the two waves. If the subscripts i and r refer to incident

and reflected, then

Pr = pc Ur (849a)

a 
P' = Pi+Pr 

(850)

U = ui - Ur (850a)

Combining these equations, we find

P'= P + pc Ur

pcU = P - pc Ur

Hence

P (PI + pcU) (851)

lasertion of (847) into (851) yields
IP

P =--(I+

o5', since

Rr= pcS

, Z + 2P (852)P' ZP @z o + zj.n + Rr

The receiving sensitivity is obtained by substituting (852) into (848)

SR = = ? S 'o (853)
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Comparison of (853) and (845) shows J
2kr

SR =--STPC

which (except for the factor o0 7 which we have ignored) is the same as (838).
S The ideal quartz crystal obeys the reciprocity theorem.

5. Absolute Calibration Using Reciprocity Theorem.

To measure the sensitivity of a transducer by use of the

reciprocity theorem, it is necessary to employ three transducers, which we

shall label A, B, and C. Transducer A is the transducer being calibrated.

It must obey the reciprocity relation; in order to do so, it must be linear and

have the same efficiency when used as a projector as when used as a hydro- 3

phone. Transducpr B is used only as a projector; its receiving character-

istics are unimportant. Transducer C is used only as a hydrophone; its

transmitting characteristics are unimportant,

The calibration consists of three measurements as indicated in

the following sketch and table.

0 o---.

Measurement No. Projector Hydrophone Input Current Output Voltage

1 B C II El

2 A C I? E2

3 B A 13 E3
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The receiving sensitivity of transducer C is the same in measurements

I and 2, and if the same separation between transducers is employed in

measurements 1 and 3, the transmitting sensitivity of B is the same for

both measurements. (If the separations are different, an appropriate correc-

tion must be ma e, based on the fact that the transmitting. sensitivity is

inversely proportional to the separation distance.)

Let the sensitivities of the three transducers be identified by

subscripts A, B, and C. Now, in each measurement the free-field pressure

produced by the projector is identical to the free-field pressure measured by

the llydro2f7one. ]n oth er words, the pressure p' in the transmitting sensi-

tivizy of the projector is the same as the pressure p in the receiving sensi-

tivity of the hydrophone. Applying equations (834) and (835) to the three

measurements, we obtain the following relations
E l

STB SRC = - (854a.)

EZ
STA SRC - - (854b)

E3
STB.SRA = -3 (854c)

Furthermore, the reciprocity relation (838) applies to transducer A

LA J STA (855)

The above four equations may now be solved to give the following results

/I E E3
STA =E 1 12  

(856a)

El E E3 J

SIA SR- l E12 3 (856b)

Also, as a by-product, the sensitivities STB and SRG may also be evaluated

MI 12 E3
STB - E 13 J (857)

E E2 i3JJ (858)

' 11J~ 12 E
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6. Requirements for Free-Field Calibration.

For accurate calibration it is important that the sound field at

the receiving hydrophone be free from reflections from the bounding surfaces

of the body of water in which the measurements are made. Unless special

precautions are taken or special methods are used, the only way of

guaranteeing free-field conditions is to make the dimensions of the test

facility so large that the spreading loss of the reflected paths reduces the

reflected intensity to acceptable levels. For very precise measurements the

reflected signals should be at least 40 db below the direct-path signal.

However, for most measurements a reduction of 20 db is adequate.

When the calibration is done in lakes or other large bodies of

water, the limiting dimension is usually the water depth. For minimum

interference from both top and bottom, the two transducers (the transducer

being calibrated and the reference) should be located half-way down. If h is

the water depth, there is then a clearance of h above and below. If the

transducers are separated by a distance r, therequirement that the spreading

loss of the surface-or-bottom-reflected path be at least 20 db higher than that

of the direct path is h
20 log- > 20

or h > 10 r (858)

Since the minimum acceptable depth depends upon the

separation r, we must investigate the requirements placed upon r. We have

already seen that to achieve far-field conditions the separation must meet the

requirement
d2 r >_ -i-(8,39)

where d is the maximum linear dimension of the active portion of the trans-

ducer and X is the wavelength. The inequality (859) is based on the require-

ment that the far-field pressure distribution be,, along tIe axis of a directive

transducer. If we consider the situation which exists when the orientation is

at right angles to the beam, we see that the separatior. between the nearest
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portion and the reference transducer :s r - -d and the separation between

the farthest portion and the reference transducer is r + 1d. The difference

in intensity levels for such an orientation is

AL = 20 log r + d
zAL

A rule of thumb which is commonly used for this condition is

r > 5d (860)

It is seen that this rule leads to a maximum intensity difference between the

nearest and farthest elements of about 1. 75 db.

From these two conditions and from (858) we find that the

minimum water depth is determined by

10dz
h >- (86!)

h > 50d (862)

For large, highly directive modern transducers the depth

requirements are quite severe. Depths of hundreds of feet are frequently
required. The Navy has two deep-water calibration stations. One is

located on Lake Pend Oreille, Idaho, which has a maximum depth in excess

of 1000 feet. The other station is located in the eastern part of the country

on Seneca Lake, New York, with a depth of about 600 feet.

7. Special Calibration Techniques.

Since the two large facilities have a limited workload capability,

it is necessary to conduct most calibration measurements in smaller local

facilities. Most laboratories engaged in underwater acoustic work have

small outdoor bodies of water which are suitable for a large fraction of the

calibration measurements. In addition, it is useful to perform measurements

in indoor tanks.

Anechoic Linings

When measurements must be made in small volumes, the problem

of reflections can be alleviated by a number of special techniques. The most

obvious idea is to make the walls non-reflective. Considerable success has
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been achieved with a ±nateriai known as insulcrete, consisting of sawdust

and concrete. The boundaries are lined with wedgev of this material:i

One practical problem is that for effective anechoic linings at low fre-

quencies the wedges must be very large. Several rubber-base materials

have good abbcyption characteristics at low pressures but are not very

effective at high pressures.

The Navy Electronics Laboratory has recently developed a

new type of calibration pool, Transdec, in which boundary reflection is

controlled. The shape of the pool is that of a canted ellipsoid of revolution.

Reflections from the walls of the pool and from the surface of the water

terminate in an absorptive sound trap which surrounds the lip of the pool.

By this technique the interference due to reflected energy is sharply reduced

and the far-field test region is an appreciable portion of the total volume of

the pool.

Special Methods Involving Transcucer Directivity

There is a class of techniques which takes advantage of trans-

ducer directivity in order to reduce the effect of reflected energy. An

example of such a technique is the use of a vertical line for the reference

transducer, the line being so placed that the reflected waves from the sur-

face and bottom arrive in the direction of a null in the beam pattern of the

line. The application of these echniques must be worked out separately for

each individual case.

Pulse Measurements

An appreciable reduction in the required di.mensions of the test

volume can be achieved by employing pulsed operatin. In this method a short

pulse is emitted and received before the boundary reflections arrive. When

this method is used, however, it is necessary that the received pul3e be

of sufficient duration to reach steady state before any reflected signals

arrive. For a transducer of small dimensions the time to build up to 95 per-

cent of the steady state value is approximately Qf, where Q is the overall Q

of the calibration system including the transducer under test. This result
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may be obtained from the fact that the transient build-up of the amplitude

of a series resonant circuit is proportional to

Rt12L 1-e

while~Z= fo L

R

Hence, at 95 percent of steady state
Qi

l-e

or
Tr tt -

l-og 0 . 0 5

3.0 1 Q Q(863)T1110 fo

If the transducer has appreciable size, an additional delay is

caused by interaction between elements, for which an allowance should be

made equal to the time required for the wave to sweep at least once over

the maximum dimension d of the transducer. Furtherrore, in order to

ob*ain a satisfactory measurement it is advisable to continue the pulse for an

additional time equivalent to at least three cycles at the operating frequency.

Adding all these time incervals -nd multiplying by the speed of sound, we

obtain the result that the difference in length Ar between the reflected path

and the direct path should be at least

Ar = (Q+3) X+d (864)

or

Ar = (Q+n+3) X (864a)

where n is the number of wavelengths in the maximum dimension, that is,

(865)

In facilities where the depth h is the limiting dimension, this criterion may

be expressedas
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or
h = /2r Ar + (Ar)Z (866)

As a numerical example, suppose the transducer is two wave-

lengths long (n - 2) and the Q of the system is 7. The criteria (859) and

(860) give; r > ~(2%)z __!:'
r = 4%

x {

r > 5(2k) = 10X

Also, Ar = (7+2 +3) . = 12?.r

The. required depth is then

h > Fl2(OX)(12X) +(12)2

=/384% 20?.

The minimum depth as a function of frequency is shown in the followizig table.

Frequency Min. Depth
(kc) (ft.)

1 100
2 50
5 20

10 10
20 5

Noise Techniques

A radically different technique having limited though very

useful application to small hydrophones is the so-called noise method, in

which the calibration tank is flooded with wideband noise and the frequency

F. response of the hydrophone is obtained by sweeping through the desired

range of frequencies with a bandpass filter. The calibration is obtained by A.

comparing the results against similar data taken on a reference hydrophone.

This method is used at the Naval Air Development Center for calibrating

sonobvoy hydrophcnes over a range of frequencies extending down to 200 cps.

It is rapid, inexpensive, and repeatable to within about 1 db, and is, in fact,
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the only economicaly feasible method of calibrating large quantities of

cheap hydrophoies. Experience has shown that a remarkably uniform sound

field can be generated, the variation being less than 0.5 db over a range of

10 inches, The noise method is of course subject to error in the vicinity of

resonant frequencies and its application is therefore limited to relatively

low-Q devices.

8. Near-Field Calibration Techniques

The development, since World War II, of larger and larger

transducer arxays has provided increasing impetus to efforts to develop and

perfect near-field calibration techniques. If, through suitable analysis of

measurements made in the immediate vicinity of 'the transducer, one were

able to predict the far-field pattern, it would then be possible to carry out the

calibration procedure in a volume not much larger than that occupied by the

transducer itself.

Considerable effort has been applied to this problem, both at the

Underwater Sound Reference Laboratory, Orlando, Florida, and at the

Defense Research Laboratory of the University of Texas. Several methods

have been explored and techniques have been developed to the point where

routine calibrations can be run successfulJl on many types of transducers.

In this section we shall discuss the DRL method. it is based

fundamentally on Green's theorem, which states that if (x, y, z) and

(x, y, z) are continuous functions of the spatial coordinates, then

ff~- 4~-dS = JIfS -4V)dV (867)
s v

where the surface integral is taken over a closed surface S and the volume

integral is taken over the entire volume enclosed by S. The derivativc.s

-and 6- are taken along the direction normal to the surface element

dS, and7Z s the Laplacian operator (111).

In applying this theorem to the near-field calibration problem,

we surround the transducer with an imaginary surface S, which is the surface

over which the near-field measurements are taken. At the point P in the
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far field, at which we desire to determine the pressure, we place

(mathematically) a simple source. We assume in the present discussion

that the pressure field is sinusoidal, and, to simplify the writing we sha,

factor out the complex exponential ejw'c which appears in every term.

Let 4 represent the pressure due to the transducer, that is,

due to the sources located within the closed surface S,

x, y, ) p(x, y, Z) (868)

and let ip be
ejkr

, (x,y,z) ejk- (869)r

where r is the radial distance measured from the point P at which the

simple source is located, and k is the wave number.

ZT, w
- = - =k c

The function p is proportional to the pressure which would be created by a

simple source located at the point P.

We are concerned in (867) with the region outside the closed

surface S. Since this region extends all the way to infinity, there are two

bounding surfaces - the surface S surrounding the transducer, and the

surface of the sphere at infinity. However, both and 4 vanish at infinity,

and the integral of ln n over the infinite sphere is zero.
ejkr

It will be noted that both the pressure p and the function -

satisfy the wave equation

I " + kz = 0 (870)

at all points in space except at a sound source. It may be shown that if

the region V contains no sources, so that both and i obey the wave

equation (870), then the volume integral on the right side of (867) vanishes.

By our hypothesis the transducer is completely enclosed within the surface S

and is therefore not included in the volume V. The only source we have to
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worry abo,.l ,s -he simple source at P. Let us exclude this source from the

region of in-cegration by L.rrounding P with a small sphere of radius a.

The volur ie integral is now zero and in its place we have a surface integral

over he &:.hall sphere. Equation k867) is now transformed to the following

Sejk<r ejkr 61 r (ejkr) (Jkr~ 6 7
J(--)-(--) idS +SS-p U - _ dS =0 (871)

L # phre

Strictly speaking, since we are integrating over the region outside the

closed surfaces, the direction n in the derivatives in (871) should be

measured toward the insides of the surfaces. However, the equation will

remain valid if we reverse the direction of n in both integrals, so that it

represents the outward normal to each surface. Considering the small

sphere, the normal n has the direction of the radius r, so that

-a- r  ( -jk a ) e jk a

If a becomes very small, this approaches the value

r r=a

Also, as a approaches zero, the pressure p approaches the constant value

p(P), corresponding to the point P at the center of the sphere. Furthermore

the factor has a constant value over the surface of the sphere, while

the pressre gradient averages to zero as the radius of -he sphere

becomes very small. The integral over the small sphere therefore

approaches the value

ejkr e d S p(PS
h~ ~ sp~Ja here

spere I? a

-- 47rp(P)
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The far-field pressure is obtained by substituting this result into

t - L IFo r jr ejkr 6 (872)p(P, - L (-7 -) " - -) s(8)
sL

where r is the distance from the far-field point P to the element dS of the

irnaginary surface S surrounding the transducer, the derivatives are taken

along the outward normal to S, and the integration is carried out over the

entire closed surface. This is the basic equation for near-field calibration.

It is seen that in order to implement (872) exactly, it is

necessary to measure both the amplitL de and phase of not only the press-ure

but also the normal component of the pressure gradient, at all points over

the surface. In the real world it is virtually impossible to make all the

measurements indicated. For practical measurements the following

approximations are made.

,1P

$

(I) The pressure gradient is approximated by

'= j k p (873)

This would be the correct expression if the pressure were a plane wave

traveling in a direction normal to the surface S. It should be a reasonably

valid approximation for a transducer of moderate curvature and a close-

fitting surface over which the pressure does not change rzpidly.

(2) Since the distance r to the far -field is normally many

wavelengths,

kr>> I

the following approximation is valid
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d eJkr .rein r  dr r_. b

jk (I - (e- - r

jk(e r r

From the above sketch it can be seen that

-cos

where is the supplement of the angle between r and n. Hence
.jk "ejkr,

5-n ( _ ) - jk (--k--) cos (874)

With these approximations (852) becomes

p(P) - J' (1 + cos )k- pdS (875)
4rS

In taking measurements on a projector, a small probe is rnove~d

over the surface S, and measurements of both the amplitude and phase of

the pressure are made at discrete points. Although theoretically S is a

closed surface, in practice it is not. necessary to take measurements in

regions where the pressure is very low. It has been found,, for example,

that for a planar array, it is sufficient to move the probe only over a plane

in front of the array. For a cylindrical array the surface S is a cylinder

concentric with the array, and the probe is moved in a circle about the axis

of the cylinder. It has been found that three such passes are usually adequate,

one in a plane through the center of the transducer and one in each of two

parallel planes near the top and the bottom of the transducer. In calibrating

transducers whose beam patterns are omnidirectional in azimuth, such as

line transducers, measurements need ;o be taken in only one vertical plane.

In general, the spacing between adjacent probe measurement positions

should not exceed one half wavelength.
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The integration indicated by (875) is carried out numerically

on a digital. computer which has been programmed to receive as inputs the

data obtained from 'he probe rmeasurements.

As a check on the near-field method, a number of t:ransducers

have been calibrated in the far field by conventional methods, and the

results have been found to agree with the predictions from near-field

measurements to within about - 1 db. Successful near-field calibrationshave been carried out in a tank. whose diameter is less than three tirries the

transducer diameter. Such measurements, of course, are pulse measure-

ments; in fact, the data obtained at such close quarters must be based on

measurements made near the leading edge of the pulse, before steady-state

conditions are reached.

The function -- in C869) is one of a class of functions knovwnr
as Green's functions. Any function which satisfies the wave equation (870)

ejkr
can be used in lieu of in (872) to compute the far-field pressure. It isj r
possible in some cases to find a shape of the surface S and a matching Green's

function such that the functicn vanishes over the surface, thereby reducing the

integrand of (872) to one term and avoidirg the necessity fur measuring the

pressure gradient n . However, it is difficult to measure the pressure over

surfaces (such as spheres) for which the Green's function is easily determined,

and it is also difficult to find Green's functions for surfaces over which p is

easy to measure.

* Defense Research Laboratory Report No. DRL-A-196, The Determination
of Tarfield Characteristics of Large, Low-Frequency Transducers from
Nearfield Measurements, by D. D. Baker, 15 March 1962.
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E. Transducer Systems

Up to this point we have been considering the characteristics of

individual transducer elements and of very simple arrays of omni-
directiona." elements. Many sonar systems both in fleet use and in experi-

mental development have complicated transducer systems consisting of

numbers of elements electrically coupled in various ways. In this section

we shall consider briefly a few of the characteristics of these systems.

1. Directivity Patterns of Simple Multi-Element Systems.

When a transducei array consists of a number of individual

transducer elements, each having its own individual directivity pattern,

the overall pattern of the array is a function not only of the individual

patterns, but also of the arrangement of the elements in the array. In the

special case where (i) all the elements are identical and (2) all are oriented

in the same direction in space, the overall pattern may be computed in a

relatively simple manner from the prcduct theorem, which states that the

overall relative pressure response is equal to the product of the relative

pressure response of one of the individual elements and the relative

pressure respo..se of a hypothetical array in which the actual elements are

replaced by omnidirectional elements. As an example, consider a plane

rectangular array of circular pistons, each having a radius a, and arranged

in a regular pattern of n columns and m rows -with a spacing b between

adjacent elements. Let 0 be the polar angle measured from the axis normal

yFOTO 00 O

M Rowso- 0 &c-@ -- --

QOO 0000
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to the plane of the array (which is also norrm.al to the face of each of the

pistons), and'let 4,be the angle in the plane of the array as indicated,.inP4.

the sketch, which deterrmines the plane in which 0 is measured. The

relative pressure ratio due to a single piston is given by (728b)

FP"= 2 l (ka sin 0) (8T8.)
L 1 ka sin e

Thc relativi" pressure ratio due to a rectangular array of omnidirectional

i, elements is (by analogy with (730)) the product of the ratios for two multi-

spot linear arrays at right angles to each other.

___ = sin (,rkb sin cos) sin ( mkb sin 0 sin 4) (882)
o 2g n sin (-kb sin e cos 4) m sin (Lkb si-n e )in)

The product theorem states that the relative pressure response of the com-

plete array is

POO )) (0. 0(863)
Po Po pL Jo

This result may be justified from the following argument. In

.any given direction (0, 4) the individual relative pressure response is the

same for all elements. If the array consisted of omnidirectional elements,

each having a relative pressute response of unity in all directions, the

response of the array would be -] of (882). Since the response ofresone o te ara wold~b -P~o - z

each individual element is[o- of 2881),.te overall relative pressureL.PoJl
response of the complete array is the product of these two functions.

To compute the directivity factor of such an array one must

integrate the square of (883) over the sphere surrounding the array. This

r is a job which is best done numerically on a digital computer. In ome

instances the resultant directivity factor turns out to be the product of

the individual directivity factors
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2. 'Electrically Steered Arrays

To introduce this subject let us imagine a transducer which is
in the form of a large rectangular array of omnidirectional elements. If

all these elements transmit sound waves in phase (or if, when used for

receiving, the outputs are all connected together with no phase delays),

then this array will have the relative pressure response (or relative

voltage response) indicated by (882), with the axis of the beam oriented

normal to the plane of the rectangle.

Suppose now that the rectangular transducer surface ir, oriented

in a vertical plane and that it is desired to sweep the beam in azimuth or to

tilt it up or down. An obvious way to do this would be to rotate the whole

array mechan ically about a vertical or horizontal axis. However, if the

array is very la: ge and heavy, as indeed some are, such a process might

be quite difficult and impractical. Fortunately, there is another way to do

this, which does not require any mechanical motion. By inserting electrical

delays in the proper manner, thereby shifting the phase of some elements

relative to others, it is possible to steer the array electrically in any

desired direction.

a. Electrically Steered Linear Arrays.

To illustrate the point, consider a multispot lineac array
consisting of n unifrmly spaced omnidirectional elements, the spacing

being a. Let the elements be A, B, C, • "', N, as indicated in the diagram

below. Considering the array as a projector, let us delay the, output of

B relative to A by a time r. We likewise delay C relative to B, D relative

to C, etc., by the same time -. As may be deduced from the sketch, the
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transmitted wave will not travel in the direction AP normal to the line, but

in a direction AR making an angle 0o with AP, such that

sin 0 = a (884)a

A typical wave front is RST, in which

AR- BS c= a sin 0

BS -C= cT - a sin 00

etc.

The effect of inserting the time delay is thus to steer the

beam axis through the angle Oo given by (884). By vary:ng the time delay

T we can steer the beam in any direction we wih. Altso, b reversing the
direction of the delay, that is, by delairing A~relative to B, etc. instead of

B relative to A, etc., we can steer the beam in the opposite direction.

The series of netvb'rks by which these delays are applied

is called a lay line or l _ke,, and the entire systen including the

switching mechanisn by which the amount of the delay is adjusted, is called

a compensator. The angle 00 is called the compensation angle or steer

angle. The electrical phase angle q'c which corresponds to the applied

delay is
Z-rC T 2ra

Po " X- n -, sin 00 (885)

Let us next examine the directivity pattern of the electric-
ally steered array. In the accompanying sketch A, B, C, etc. represent

"L

/C
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the transducer elements, separated by a distance a as before. We seek the

elative response in the direction making an angle 0 with the normal to the

array, AP. To do this we proceed as we did previously for the uncrompen-

sated array by adding the pressures of the waves traveling along AA",

BB", CG", DD", etc. The -ly difference between the present case and

the previous analysis of a multispot array is the intentional -'me. delay

inserted between successive elements.

To facilitate the analysis, let us draw a line A B' C'

making an angle 00 with the array ABC... We then drop perpendiculars

BB', CC': etc., from the array 'o this line. As may be seen from (884)

the segment BB' is equal to the distance which would be traveled by a sound

wave during che delay time T. Also, the segment CC' is equal, to the distance

which would be traveled by a sound wave during the time 2T, which is the

time delay bet-,,een C and A. It is evident that we may consider B', C',

etc., as being hypothetical sound sources which emit waves in phase with A.

These waves tcavel along the lines B'B, CC, etc., arriving at B, C, etc.

in time to account for the inserted time delays.

To comnpare the phase of the wave AA" with that of BB ",

all we need note is that by the time A has traveled a distance

AL = a sin e

B has traveled an effective distance

BB' = c- -, a sin 0

Hence the difference in effectivco distance traveled is

AL -BB a (sin 0 - sin 00 )

and the difference in phase is

= __(sin0- sin Go)

This same phase difference occurs between BB" and CC", and between CC"

and DD", etc.

For an uncompensared array the titne delay TiS zero, so

that 0o is zero. Hence the phase difference between AA" id BB' is
sin 0 (uncomp,..sated array)
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Therefore the effect of the compensation has been to change sin 0 to

sin 0 - sin 0. The formula (715b) for the relative pressure response is

applicable-to a compensated array provided we redefine the angle 4. Thus L
p() _ sin n (714b)

" PO n sin

where

ia
a (sin 0- sin 0 0 ) (886)

sin = -
a

a = separation between adjacent elements of the array

- = time delay between adjacent elements

It will be recalled that the beam pattern of an unsteered

linear array is a figure of revolution obtained by rotating the two-dimensional

pattern about the line of the array. In the two-dimensional pattern the beam

axis is a line through the center of the array, perpendicular to the array.

In the three-dimensional unsteered pattern, the locus of the maximum

response axis is spread out over the equatorial plane. The side lobes are

conically shaped regions.

In the electrically steered array the maximum response axis

of the two-dimensional pattern is shifced away from the normal through the

angle 00. The locus in three dimensions is thus a cone, similar to the side

lobes of the unsteered array. The pattern is no longer symmetric about

the maximum response axis. ,

.I -
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One price which must be paid for eledtrical steering is

a broadening of "he beam. The larger the angle 0o through which the

beam is steered, the broader the beam becomes. The beam is broadest

when the delay is such that sin 0= 1, or 0 90*, and the beam axis is

pointed along thu direction of the array line. This is called the end-fire

position. (Although the beam is broadest in this position, the directivity

index of an end-fire array is generally higher than that of the same array

without electrical steering). An unusual end-fire condition occurs in the

case where the element spacing is one-half wavelength. Examination of

(886) shows that when

iT
a = jk and 80 =1

the phase angle i is

= I - sin 8)

The response, of course, is a maximum in the direction of the beam axis,

8 = , where i =0 and

n sir J

But it is also a maximum in the opposite direction, 8 = - y-, since

= -ir when sin 8=-i. An end-fire array therefore has a high relative

response in the backward direction at frequencies such that the element

spacing is an integral number of half wavelengths.

Electrically steered linear arrays are sometimes

mounted horizontally and used to determine bearings of targets in azimuth.

So long as the sound waves from the target arrive at the array while traveling

in a horizontal plane, the bearing determination is accurate. However, if

the target is located appreciably below or above the array, so that the waves

strike the array at an appreciable angle with the horizontal, the conical

nature of the beam pattern introduces significant errors into the bearing

measurements.
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b. Electrically- Steered- Circular Array.

C A number. of important transducer arrays are designed

ayin the form of a circular pattern of vertical staves. Each stave is itself a
i linear multispot array, and the entire assembly covers the sttrface of a

3 cylinder. For the present discussion we shall ignore the directivity in the

vertical plane and shall consider the array to be a circular a-.rangement of

omnidirectional elements.

If such an array is unsteered, its beam pattern will be

si.nilar to that of a continuou, ring transducer, discussed earlier. The

beam axis will lie along a ~ne through the center of the circle perpendicular

to the plane of the circle, and the beam pattern will be symmetric on either

side of this plane. The pattern of a continuous circular ring is omni-

directional in the plane of the circle. The corresponding pattern of a

circular multispot array is also omnidirectional except for a slight

scallop effect due to the finite spacing between elements.

In order to generate a beam in the plane of the array it is

necessary to apply a suitable set of delays to the various elements. The

delays are the same regardless of whether we consider the array as a

projector or as a hydrophone system. In this discussion we shall consider

it as a projector. Since there is no a priori preferred direction, we may

arbitrarily choose any direction in the plane of the circle as a reference.

It is clear that the bearn pattern will differ slightly depending upon whether

the reference direction passes through a transducer element, or bisects

the angle between two adjacent elements, or occupies some intermediate

position. For the purpose of the present discussion it will suffice to

consider the simple case in which the reference direction passes midway

between two elements. The gernetr) of the situation is shown in the

following sketch, The center of the circle is at 0 and the reference

direction in which the array is being steered is OP. Let be the angle in

the plane of the circle which measures the positions of the elements relative

to t.c raaerce direction OP. D, all of tha elements are used, the maximum
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delay must be applied to the foremost elements (near € = 0) and the

minimum is applied to the rearmost elements (near ? = 1800). Although

a negative delay is a physical impossibility, there is no loss in generality

if we apply mathematical delays of such an amount as to reduce the phases

of all elements to a common value of zero along the line 0'0" at right

angles to OP. Mathematically, this calls for negative delays to be applied

to the elements in the rear half of the array. Physically there is no change

in the array performance if a constant amount is added to all of the delays,

sufficient to make all the delays positive.

Reference to the above figure will show that the mathe-

matical delay which must be applied to element R at an angle is

T = a cos @ (887)
c

where a is the radius of the circie and c is the speed of sound.

If corresponding delays are applied to all the elements (the delays being

proportional to their perpendicular dist-ance eorn Lhe line 0;0" ), then as
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far as the reference direction OP is concerhed, the circular array will be

equivalent to a linear array in which all the.elements are located at their

projections on the line 0.'0".

It should be pointed out that in forming beams with most

circular arrays in practical use, only those elements in the forward semi- -
circle are useu. In fact, the number of active elements is usually restricted

to those in a limited arc of about 120 degrees in the front.

Although the compensated circular array is equivalent to

a plane array so far as the reference direction is concerned, its behavior in

other directions is considerably different. To determine the beam pattern in

the plane of the circle, consider the direction OQ making an angle e with OP,I as indicated in the following sketch. We are concerned with the resultant

r, _QV /

pressure at a distant point in the direction OQ, due to the individual

contributions from all of the elements of the array. Accordi, to the usual
far-field assumptions, we are concerned only with the relative phases of

the pressure waves. It will be convenient to use t the infro 0 to he

far-field point as the reference and to measure all phaes in terms of theiffrncein pah'ent °rm thsrfrnc ditnce
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Considering an element located at R, we note that the

effect ol the delay inserted by the compensator is to move this element I

to its projection S on the line 0'0". The effective path length is therefore

from S to IR and thence to the distant point along RQ'. If we draw TU

tangent to the circle at T, then TU is peipendicular to both OQ and R ',

an('the path length to the distant point from T is the same as from U. The

difference between the reference path length from 0 and the effective path

length for the element at R is[ OT - (SR + RU)

and the phase angle is obt .ined by multiplying the difference in path length~r
by the wave number k ( -i- )" Assuming the radius of the array circle to

be a, we find

SR = a cos

RU = VU - VR = OT -VR
a a- acos( o

The phase angle relative to the origin 0 is then

" = kfOT- (SR+RU)
= ka cos (-)-cos ] (888)

Let N = total number of elements in the array

ZYC n = number of elements active in beam

(assumed to be an even number).
27r a

Then the angular spacing between adjacent elements is - and the

resultant pressure is proportional to
n

f2ejkacs(r.-)- cos l+ ekL' (4L +J - Cos ij

W 'hen e is zero, the above expression simplifies to n. Hence the relative

pressure e'esponse is
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p (0) - jQka cos@( - -Cos j]+jka cos(4; + 0) - cos4) (89L
Po A-

where 90)

The computation of beam patterns for specific nunerical

cases is 'best done with the aid of a digital computer- If all of the elements

in the entire circular array are actively used, a certain amount of

simplification of (889) can be accomplished through syrmetry considera-

tions. One of the resulting simplifications is the cancellation of the

ilaginary terms, leading to a phase relationship of 0 or 180 degrees

relative to the pressure along the axis. In general, however, wher only

a portion of the elements, comprising the forward sector, are used, the

relative pressure response remains complex, indicating a variable phast

relationship as a function of the deviation angle 0. An interesting conse-

quenceof this behavior is the absence of true nulls in the beam pattern,

since the real and imaginary components oi (889) do not both go to zero at

the same value of 8.

The preceding analysis was carried out for the special case

where the reference direction passes midway between twc adjacent elements.

Slight differences in patterns are observed at other pos'itions. However, if

the number of elements is more than a dozen or so, these local variations

are relatively insignificant.

The circular array is admirably suited for electrical

steering in azimuth, since it has no strongly preferred direction of

synnetry. The directivity pattern varies only slightly as the beam is

rotated in azimuth, and it repeats itself every time the axis'turns through

one element spacing. This means that with very little distortion the beam

can be steered to any azimuth orientation. This behavior contrasts

sharply with that of the steered linear array.

If each of the omnidirectional elements around the

periphery of the circle is now replaced with a vertical stave which is itself

330



a linear array, the beam pattern in the plane of tht. circle is unaffected,

out greater directivity is achieved in the vertical plane. The geometry

of the pattern in three dimensions is rather complicated and will not be

analyzed in these notes, It will be noted that the steering of such an array

in the vertical plane as well as in azimuth is a rather complicated engineer-

ing design problem. When the beam is steered more than about 30 degrees

in elevation a noticeable broadening of the beam occurs in the vertical

direction.

[c. Volumetric Arrays

The arrays thus far considered have consisted of simple

arrangements of transducer elements along a straight line, in a plane, or

around the circumference of a circle. it is possible to achieve the same

amount of directivity in an array of somewhat smaller overall dimensions

by means of a so-called volumetric arrangement. In a volzmetric array,

transducer elements are placed at various Dre-calculated positions within[the volume oi the array, in addition to those located around the outside.

Computations must be carefully worked out to determine the proper amount

of compensation required for beam steering. An example of a volumetric

array might be a circular (actually cylindrical) array in which elements

are spaced around one or more snaller concentric circles in addition to

the outer circle. In general the design of such a transducer array is

sufficiently complicated to warrant the use of a digital computer to determine

the required delays, the beam pattern, and the directivity index.

d. Delay Lines and Compensators

In some transducer applications it is desired to form a

finite number of fixed beams by applying suitabie delays to the various

elements of che array. We shall discuss this subject with reference to the

outputs of the hydrophone elements of a receiving array, although the

theory Also applies in principle also to the input signals to the elements of

a projector. Given a number of elements in prescribed physical locations

in the array, it is possible to figure out the required Aelays to be applied to
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the outputs of the elements such that when the delayed outputs are connected

in phase a beam is formed in a desired direction. By subjecting the outputs

of the hydrophones to a number of different delays and properly connecting

the outputs it is possible to form a number of fixed beams simultaneously.

Traditionally, delay lines have been constructed from

conventional circuit elements (inductors and capacitors). In recent years

a somewhat different technique has been developed, called DIMUS (digital

multibeam steering). In this method the outputs of all the hydrophones are

sampled at a suitable rate (depending upon the bandwidth of the signal) and

are then infinitely clipped, leaving only polarity information (no amplitude

information). The output of each hydrophone is then fed into a shift

register, which is a device containing a large number of flip-flop elements.

AThe input digital information is transmitted down the shift register from one

Pt element to the next at a rate equal to the sampling rate. Suppose that at

-t = 0 a + is fed from a hydrophone into the first element of its shift register.

After one sampling period At this + is transferred to the second element,

Fand a new digit is fed from the hydrophone (and clipper) into the first eiemcnt.

Suppose that the sequence of digits (that is, polarities) from the hydrophone

is as follows:

+, -, ,+, -, +, etc.

_
1  Then the appearance of the shift register at t = 0, At, ZAt, etc. is as

indicated in the following sketch:

Element No. 1 2 3 4 5 6

"i t = 0at = At

t =3At

t 4At _11Y. UZ I
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The output of each hydropho:ne element is fed into a separate shift registe'r.

Any desired dejay up to the maximum available from the shift registers

can be obtained by tapping off from the Iroper element of the shift register.

A beam can be formed by taking a tap off each of the shift registers at the

proper point corresponding to the required delay. The outputs are then

added'together. A number of beams can be formed simultaneously by

connecting together the outputs of several combinations of shift register

elements. The diagram below shows schematically the formation of two

beams from four hydrophone elements and their associated shiit regi.-.ters.

Hydrophone

A

B

CI

Another device which is particularly useful for training

a single beam is the universal compensator. This consists of a flat plate

made up cf a number of conducting bars connected to successive points

along a delay line, as indicated in the skeech below. The time for an

electrical signal to move upward from the bottom to the top of the delay

line is the same as the time required for an acoustic wave to travel across

the transducer array.

On top of the fixed plate there rests a rotatable

commutator arrangement, built as a scale model of the actual array, with

a wiper contact corresponding to each transducer element of the array, and

connected electrically to that element. The maximum delay corresponds W
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the topmost portion of the fixed plate shown in the sketch. Hence the

vertical direction (pointing upward on the paper) corresponds to the

direction of the sonar beam. As the commutator is rotated over the

surface of the fixed plate, the sonar beam is rotated electrically rela-

tive to the fixed hydrophones installed in the array.

t In the example shown above the array consists of a

symmetric circular arrangement of eight hydrophones. It is not neces-

sary that the array be symmetric'. Compensators can be built to work

with irregular arrays tailored to meet the individual requirements of

particular in:stallations.

e. Frequency-Dependent Compensation

So long as the delay introduced is independent of the

acoustic frequency, the compensation angle oc rhe major lobe is also

independen -,f frequency. There are, however, compensatoi" systems in

which the delay is inversely proportional to the frequency. In such

transducers the position of the major lobe varies with the frequency.

0: 3.34



Ti the transmitted signal consists of a continuous spectrum, it is possible

to echo-range simultaneously over a large sector, since each bearing in

that sector corresponds to the location of the maximum response axis for

some particular frequency. Thus, when an echo is received, the bearing

of the target can be determined from the frequency of the echo.

3. Bearing Deviation Indicators.

In principle the bearing of a source of sound or of an echo

returned from a target can be determined by steering the receiving array

until the axis of the main lobe points in the direction-from which the

sound is coming. This type of procedure is commonly employed in

making various sorts of physical measurements in which the maximum of

some function is sought. When it is applied to sonar, however, serious

problems arise from the fact that the received signal is subject to very

large fluctuations. These fluctuations, as we have learned previously,

are due to a number oi causes and include both short-term variations in

transmission loss and longer term interference effects such as the Lloyd

mirror effect. For these~reasons it is in general impractical to determine

the bearing of a sound source by steering the beam until a maximum response

is obtained. In echo ranging the difficulty is even worce.

For these reasons it has been necessary to develop a device

called a bearing-deviation indicator which is specially designed to yield

bearing indication. Several types are in use, two of which are described

below.

a. Amplitude - Difference Method.

To illustrate the principle, let us assume that the trans-

ducer system consists of two similar transducers mounted one above the

other on a common vertical shaft. The two transducers are mounted in

azimuth positions relative to each other such that their maximum response

[ axes are separated by a small angle called the separation angle. The out-

puts of the two transducers are connected in series opposition, so that the

system indicates the difference between the two transducer voltages.
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Let the two halves of the transducer be designated as

A and B. .Ifthe trans uce" is 6iiented such that the maximurn response

axis of transducer A 6oincides With the direction of the incoming signal,

then A will give a larger indication than B. On the other hand, if the

direction of the incoming signal coincides with the maximum response axis

of B, then-B will give a larger indication than A. If the transducer is

oriented so that the direction of the incoming signal is midway betwe-en

the axes of A and B3, the output will be zeZro

The behavior of the differential output as a function of

the bearing deviation angle is shown in the sketch below. The output is zero
ii for zero deviation and has a positive or negative value depending upon

whether the deviation is to the right or left of the true bearing.

0>

A more practical arrangement is one in which a single

transducer is operated with two different electric compensators arranged

so that the two maximum response bearings differ by a few degrees. The

differential output of the two systems furnishes a source of bearing

information similar to that described in the preceding paragraph.

b. Phase-Differential Metiod.

In this method the transducer is split into two halves

A and B, the outputs of which are compared in phase. For sound waves

coming in the direction OP which is at right angles to the line joining A and

B, the waves arrive at A and B simultaneously and there is no difference
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in phase. If, on the other hand, the sound is coming from the direction

3z, 11.z. the distance traveled to B is less than the distance traveled to

A by an amount s zin 0. Hence there is a difference of phase

s--- s sin 0
where s is the separation between A and B. By noting whether Ai is

positive or negative, one can tell whether the source is to the right or

to the left of OP.

The advantage of these bearing-deviation indicators

over the simple method of training a single beam to the maximum response

bearing lies in the fact that in each case the two outputs which are compared

are obtained from acoustic transmissions which have simultaneously

traversed the same acoustic path, thus eliminating mQst of the problens of

variability which cause trouble in the cearch for the bearing of maximum

response.
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(REVISED NOTES)

INDICATORS AND RECORDERS;*DETECTION OF SIGNALS
4

We have discussed the processes by which acoustic signals in the water

are transformed-to electrical signals in the receiving equipment. In order

to be useful, these signals must be further transformed to a form in which

they may be recognized by a human operator. Instruments which perform this

function are called indicators and recorders. An indicator exhibits a trans-

ient response which is perceptible only while the signal is being received.

A recorder makes a permanent record of certain of the pertinent characteris-

tics of the signal.

A. Types of Indicators and Recorders.

1. Audible Presentations.

In this type the signal is presented to the operator in the

form of audio waves in air, normally by means of headphones. Such instruments

arc obviously indicators. Most recorders are of the visible rather thn the

audible type, but audible records can be made with a tape recorder.

The audible presentation is the most logical way of presenting

acoustic signals to the operator, and in many applications it has a great ad-

vantage over the visible type. In direct listening, where it is desired to

recognize the sound of a particular object such as a ship, aeainst the general

background interference, the ear of a trained operator possesses a unique

capability. For underwater voice communications, audible presentation is

clearly the only practical type. In echo-ranging against a target which is
moving toward or away from the sonar, fhe returning echo experiences a change
of-frequency called the Doppler shift. The human ear is very sensitive to this

change of frequency 'and has an exceptionally good capability of picking such

an echo out of a reverberation background.

2. Visual Presentations. Most visual presentations are of either of

two types--the paper-recording type or the cathode ray type.

a. Variable Intensity Recorders.

The first widely used visual recorder was the Sound Range

Recorder, developed by the British during the early part of World War II. The

338



paper used in this recorder is chemically treated and is in the form of a

long strip wound on a roll from which it is drawn at- constant speed. The

paper passes between a fixed metal plate and a metal stylus which moves across

the paper at right angles to the direction in which the paper moves. When a

ping is sent out, the stylus begins to move across at constant speed, so that

its position at any instant is proportional to the round trip distance of the

sound wave out to the point from which the acoustic energy is scattered-back

to the transducer. The electric current which flows between the stylus and

the plate causes a darkening of the paper in proportion to the received acous-

tic power. The presence of a target eohowould thus appear as a dark spot on

the trace. This type of indication is called variable-intensity ication.

When an echo is present, the range to the iarget can be found

by measuring the distance from the beginning-of the trace to the dark spot

representing the echo. One advantage of this type of presentation is that

when a number of pings are sent out in sequence, the dark spots representing

the echoes on successive traces tend to form a line, enabling the eye to carry

out a sort of visual integration. Whereas a single spot may have been too

weak to detect, the presence of.a line of spots enhances the recognition.

Other recorders of this type have been devised to indicate

other information. For example, there are recorders used for passive listen-

ing, in which the position of the stylus is proportional to bearing rather than

range. If a ship or other source of noise is present on any given bearing, the

stylus will produce a dark spot at the corresponding point on its sweep. After

a large number of sweeps,-the record of the ship will appear as a line on the

paper.

b. Variable-Displacement Recorders.

Recorders in which the displacement of the stylus is pro-

portional to the intensity of the received acoustic radiation (or is some

other function of the intensity) are called variable-displacement recorders.

A recorder of this type is used in an important airborne application. This

type is not suitable for the visual integration associated with the repetition

of the signal. Its principal advantage is in applications where the signal

can be recorded but once. It provides a more quantitative and objective record

of the received acoustic radiation, enabling a more reliable estimate to be
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mbade bf the-presence 6f the sighal.

Ohe-'disadvantage of the variable displacement type of pjesenta-

tion is that one of the two dimensions of the presentation-must be devoted td

intensity,, thereby restricting the amount of information which can, be pre:-

sented.

- c. Variable-Intensity Catho Ray Presentations.

A common, type is the plan posiltioh imdicator, similar to

the corresponding type -of raoar scope, in which range is measured radially

outward from- the center and azimuth is measured by the polar angle about the

center point. The brightening of the screen at any point is proportional to-

the amount of acoustic -energy received from the particular range and bearing.

An echo therefore appears as a bright spot. In a conventional radar, pulses

are continually sent out and the back-scattered electrcmagnetic -energy is re-.

ceived as the antenna sweepa around in azimuth. The appearance on the scope,
!i is that of a bright r-adial line which sweeps around the circle, leaving bright

spots wherever returned energy is received. The pattern gradually fades away-

and is renewed by the next sweep. Because of the slow speed of sound in water,

this type of operationis not practical in a sonar P.P.I, Instead, it is

desirable to employ a 'scanning type of sonar in which the outgoing pulse is I
transmitted omnidirectionally in azimuth and the receiving equipment is de-

signed to scan through '360o.

d. Variable-Displacement Cathode RU Presentations.

In this type the horizontal sweep is controlled by either,

range or azimuth and the vertical displacement is proporti6nal to the acoustic

intensity. Such A sc6pe is called an A-scope.

One of the principal functions cf visible presentations is

to provida quantit-ttive data, such as range, bearing, Doppler speed, etc. Al-

though the ear is a marvelous instrument for detecting and classifying sounds,,

'i auxiliary instruments are needed for making precise quantitative measurements.

The continuing trend toward the development of more sophisticated signal

processing systems in modern sonars is placing greater and greater emphasis

upon visual presentati6s.

B. Signal Detection.

1. General Remarks Concerning the Observation of Acoustic Signals.",

The type of display with which an acoustic system is provided
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depends upon the purpose of the acoustic observation or measurement to be

made. Large sonar systems are usually designed in a number of different

modes and are therefore provided with a number of different displays--both

indicators and recorders, and both aural and visual presentations.

Consider, for example, a typical sequence of opration involved

in anti-submarine warfare. The first event which must take place is detection.

Second, the target must be classified; that is, a decision =st be made as to

whether the detected target is or is not a submarine,. Third, the target must

be tracked for a sufficient period of time to permit the attacking vehicle to

get into a favorable attack position. Fourth, the target must be localized,

so that its position is known with sufficient accuracy to permit a weapon to

be launched. Each of these operations imposes its own requirements on the

nature of the sonar information to be presented and the manner in which it is

displayed.

The principal requirement for detection is the ability to identify

the presence of a weak signal in the midst of ever-present background inter-

ference. Since the ear is a very sensitive detector of threshold signals,

aural presentations are valuable for the detection phase. Another type of

presentation which is particularly useful for passive sonars is the variable-

intensity record of the-bearing (or some other characteristic of the target

signal) versus time, as has been mentioned previously. The visual integration

performed by the eye in sighting along the lines formed by repeated sweeps

is of significant value in enhancing the detectability of weak signals. An-

other technique, which is widely used in active sonars, is to transmit special

types of pulses designed to operate in conjunction with signal processing

systems. The detectability of a returned signal is enhanced if it is cor-

related with a stored replica of the transmitted pulse.

In classifying a target we search for cha.' ,teristics of the target

signal which distinguish it from the signals from other objects. The ear is

extremely valuable for this purpose, especially in passive sonars where spec-

ial characteristics of the signal, such as the rhythmic beat of propellers,

may frequently be identified. Another important characteristic of the signal

generated by a target is its spectrum. In the case of active sonars, clues as

to the identity of a target can be obtained from various characteristics of

the echo, such as its duration, Doppler shift, and detailed structure. For
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example, if a'suspected echo has an extremely short durati6n, it is veiy likely

not an echo but a noise spike, since' even thbugh the original pulse mi:ght-have

beeA quite 'short, the echo is lengthened by the finite dimensions of the target.

Also, if the transmitted pulse is'sufficiently short, the returned echo will

tend to reveal highlights coresponding to the major reflecting surfaces of-ithe

target. Doppler information is useful in several ways, such as in pig-to-

ping correlation, where the change in range between pings should equal the

.product of the Dopplei speed and the-elapsed time.

r .In tracking operations the principal object is to keep the target

within, range of the sonar at all timeLs. A bearing deviation indicator is use-

ful for tracking with passive sonar, sin~e it provides 6ontinuous information

on the bearing of the target. Passive range information is more difficult to

come by. Information obtained from the Intensity of the received signal can

V at best provide only the crudest idea of the range, since the source level of

the target is in general not known, and since the propagation loss depends on

a number of variable factors and is therefore not a reliable measure of range.

There are, however, a few phenomena available from which a certain amount of

range information can be obtained, though we shall not discuss them. Histori-

cally submarines have widely used a method of tracking involving a combination

of bearing information and maneuvering of the tracking vehicle, the so-called

bearir4ig-only method.

Active tracking has the obvious advantage of accurate range informa-

tion, but the disadvantage of fully alerting the target. An important require-

ment in active tracking is a high data rate. Ideally such tracking is best

accomplished when the tracking vehfcle moves continuously through the water

with the target, do that a continual flow of data is available. If sonobuoys

are used, the buoys must be dropped at advanced positions in anticipation of

the target. The problem is most severe in the case of tracking by a single

dipped sonar, where the tracking vehicle is blind (more accurately, deaf!)

during the interval between successive dips, and the target is most likely

aware of this fact. These are essentially operational problems which are

beyond the scope of these notes.

The highest accuracy in range and bearing is require.d in the final
localization prior to weapon launch. This is an operation which clearly re-
quires active sonar (or possibly other, non-acoustic sensors) and which demands
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the minimum time late.

Of all the functions discuissed above, the detection faunction places

the highest requirement.upon the ability of the sonar operator to pick weak

signals out of the background interference. Classification normally requires E
a higher signal-to-noise ratio, since more information concerning the target

ii is needed; tracking and localization require a still higher 6ignal-to-noise

ratio. For this reason the most sensitive displays are required for the de-

tection phase, and in the discussionvhich follows we shall be concerned chief-

ly with the problem of detection. We shall first discuss the conventional ap-

proach based on aural detection of signals, and thena modern approach based

on statistical decision theory.

2. Signal-to-Noise Ratio; Signal Differential; Observed Differential.

Let W be the input bandwidth of the sonar system and let S and

N denote the signal power and the noise power respectively in the band W at

the output of the hydrophone array, which is the input to the detection system.

Then the input signal-to-noise ratio is S/N, and the input signal differential

is the decibel equivalent of the signal-to-noise ratio,

A s/4 S - 1 l loS (901)

It should be noied that the signal can never be observed alone with-

out the noise being present. If the signal is present, the observed power is

S+N; if the signal is not present, the observed power is N. Hence the observed

differential is

ALobs = 10 log S N

. 0 log ( + 100"1Ls/N) (902)

The relationship between the observed differential and the signal differential,

expressed by (902), is shown in the following graph. Note that when the signal

power is equal to the noise power, the signal differential is zero and the

observed differential is 3 db.

3. Recgnition Differential.

It has long been known from tests of human operators on both

aural and visual presentations that detection is practically certain when the

signal-to-noise ratio is high and practically impossible when the signal-to-
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between these two extremes in which the recognition probability changes from

0 to 100 percent. This transition region is illustrated in the following

graph in which the probability of recognition is plotted against a variable
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sponse of a large number of human operators tested under controlled laboratory

cbnditions. It is clearly this region of transition which is of major in-

terest in the investigation of the dectability of signals.
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The -zero point of th; relative differential scale has oeen set

arbitrarily at the-opoint where the- probability is 50 percent. The actual

value of the signal differential at this point is called the recognition dif-

r ferential. It may be expressed mathematically as follows:

M = L50-LN (003)

Where 4 = recognition differential, db,

L50 = signal level required for 50% probability of recognition,

L = level of interference. both levels being expressed in d

referred to the same raference.

'PX The numerical value of M depends upon the nature of both the signal

and the interference, upon the type of indicating system, and upon the band-

width of the system. It should be noted that a large positive value of V means

that a large signal is required for recognition. It therefore signifies poor

recognition. On the other hand, a small value of M signifies good recognition.

We shall shortly consider this subject in more detail, chiefly in connection

with ech6-ranging. For the present a few general remarks will suffice.

When the signal and the interference are alike in character, as is

sometimes the case in direct listening, the only indication that a signal is

present is obtained from the magnitude of the total response of the system.

If, for example, the signal begins at a very low level and increases gradually,

it is apt to go unnoticed until it becomes very large. Under these conditions

the recognition differential is high. If, however, the signal either starts

or ends abruptly, so that a sudden change occurs in the output (i.e,, in the

observed differential), the signal is more easily recognized. Under these

cenconditions the observed differential corresponding to 5C% probability of

aural recognition is approximately 3 db, which corresponds to a recognition

differential of 0 db.
When the signal possesses certain readily distinguishable character-

!I istics, it may be easily recognized even though it is continuous, without any

sudden starting or stopping. In such cases the recognition differential may

qi be very small or even negative, depending upon the nature of the signal.

Inecho-ranging with conventional sonar the signal is an echo, which

is a short pulse having a fluctuating amplitude, due to the characteristics

of the target and the fluctuations of sound transmission in the sea. The back-

ground against -ihich the signal must be recognized consists of both reverber-



ation and wideband noise. Under some conditions the noise is dominant and

under other conditions the reverberation is dominant. The recognition dif -

ferential in the two cases is different.

Aural Recognition Differential for Signals in Ambient Noise

Background. The ear is most sensitive to frequencies in the vicinity of 800

cps and for this reason it is customary to reduce the sonar frequency (which

may be as high as 30 kc) to about 800 cps by means of a heterodyne circuit.

Another important characteristic of the human ear is its ability to filter out

broadband noise when listening for a pure tone. Tests have shown that only a

small range of frequencies in the vicinit of the tone contribute a masking

effect, even though a much wider band is presented to the ear. This range oft frequencies is called the critical bandwidth of the ear and amounts to about

50 cps. All frequencies outsi. this bandwidth are automatically rejected.

The numerical value of the aural recognition differential for pulsed

CW active sonars depends upon the bandwidth of the system and upon the duration

of the pulse, or ping length. Tho effect of bandwidth for a ping of relatively

long duration is illustrated in the two sketches below. The apper sketch shows

qualitatively as a function of the bandwidth the total noise level in the band
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and the required signal (echo) level for 50% recognition. The lower sketch

shows the recognition differential, which is the difference between these

two levels. It will be seen that while the noise level r:-.ses steadily with

increasing bandwidth (due to the 1.0 logW term) the required signal level for

50% recognition rises at first and then levels off.

At the critical bandwidth of the ear the signal and noise levels are

equal and the recognition differential is zero, indicating that the ear can

just pick a tone out of the background when the total power in each is the

same.

When the bandwidth exceeds the critical bandwidth, the additional

noise does not produce any further masking since the ear, in effect, filters

out this noise. Therefore even though there is more noise present, no increase

4n echo level is required. The negative value of recognition differential

merely indicatesi that more noise is present, not that less signal strength is

needed.

When the bandwidth is smaller than the critical bandwidth, the ear

begins to lose the sensation of tone and both echo and noise are heard as a

single blended sound, and the recognition of the echo must be made principally

on the basis of loudness alone. Because of this behavior of the ear it i3 de-

sirable that the bandwidth employed in aural presentation systems be at least

as wide as the bandwidth of the ear.

In defining the recognition differential of pulsed CW aural systems

it is often convenient to include the bandwidth of the ear in the definition,

so that the recognition differential is defined as the difference between the

signal level and the noise spectrum level. Let M' denote this modified defini-

tion. Then

M' = L50-Lo (904)

where LNo is the spectrum level of the noise at the signal frequency. M' is

the amount which must be added to the noise spectrum level to obtain the re-

quired signal level for 5C% probability of recognition. If M denotes the

recognition differential based on the total noise in the critical band Wc, the

relationship between M and M' is

M = M + 0 log we  M + 17 db (905)
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Effect of Pin Length on Recognition Differential.

Experience has shown that it is more difficult ':o recog-

nize short pulses of single-tone sound in a background of wideband noise than
to redognize longer pulses. A typical curve of recognition differential

(based on noise spectrum level) vs. ping length is shown in the accompanying

graph. It is seen that for pings shorter than about 200 ms (milliseconds),
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the recognition differential depends very strongly upon ping length. As the

ping length is increased above 200 ms, the recognition differential curve

levels off and reaches a steady value for pings of about 1 second duration.

The ear responds to a 1 second pulse as well as it responds to a steady tone.

The experimental curve shomn above can be fitted fairly well with the

following equation

M' 45.5 - 11.7 log 1+OE0O36 db (906)

wiere t is the ping length in milliseconds. The asymptotic value of M' ob-

tained from (906) for very long ping lengths is 17 db. The linear portion of

the curve for ping lengths less than about 100 ms can be fitted with the simple

p, equation

M' 43 -0 log (906a)
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The recognition differential for the case where the background inter- f
ference consists of reverberation will be discussed in a later section.

4, Statistical Detection Theory.

The steadily increasing complexity of JLSW operations has led to

a developing trend toward automation in order to relieve human operators of as

many burdens as possible. An example of this trend is the interest in auto-

matic detection systems which monitor the output of the sonar and set off an

alarm whenever a target is detected. The concept of recognition differential,

which was developed with reference to signal detection by human beings, is

largely subjective and empirical and is not adequate for automatic detection

systems. What is needed is a completely objective theory of the detection of

signals in the presence of random noise. A considerable body of theory has

been developed by a number of workers in the fields of radar and communications

over the past two decades and is gradually being applied to sonar systems. One

of the most useful approaches has been that of Birdsall and Peterson*, which

seeks to define the basic mode of operation and to evaluate the performance of

a so-called "optimum receiver" on the basis of what is known about the charac-

teristics of the signal and the statistical properties of the background inter-

ference. An optimum receiver is an ideal device which operates in such a way

upon the input presented to it as to yield the theoretically best possible per- i
formance consistent with the input signal-to-noise ratio. The theory does not

evaluate the performance of any particular hardware, but rather the optimum

performance against which practical, non-optimum receivers can be rated, so

that one may kyiow how much could be gained by.further improvement.

The theory was originally worked out for a few types of s gnals in

an ideal background of whit6 Gaussian noise. Although it has been extended

somewhat in scope, the mathematical complications become severe as more realism

is incorporated into the model, and progress is slow. However, two of the

original cases are of considerable importance and will be discussed below.

Inasmuch as an adequate presentation of the required background of probability

and statistics is beyond the scope of these notes, the derivation of the

results will be somewhat sketchy.

*N. W. Peterson and T. G. Birdsall, "The Theory of Signal Detectability,"
Engineering Research Institute, University of Michigan, Technical Report

13, June 1953.
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a. The Decision Process.

The detection of signals in the presence of a background-

of random noise is essentially a decision process. Given an input consisting

of noise which may or may not contain the desired signal, Vne decision makeri

whether it be a human being or a piece of electronic equipment, is requiredto

decide whether a signal is present or not. Since the noise is a random pro-

cess, the problem is statistical in nature and there is always a finite proba-

bility of making an error. There are two possible types of input--either the

signal is present or it is not--and two possible decisions--"yes", it is there,

or "no", it is not. Therefore on any trial one of the following four possible

events must occur:

(la). Correct detection -- signal present; decision "yes"

(lb). False rest -- signal present; decision "no"

(2a). False alarm -- signal not present; decision "yes"

(2b). Correct rest -- signal not present; decision "no"

It is seen that (la) and (lb) are mutually exclusive, exhaustive

events. Given that a signal is present, one or the other must occur, but if

one occurs, the other cannot occur. Therefore the sum of the probability of

saying "yes" and the probability of saying "no" is unity, so that if one of

tpe two probabilities is known, the other may be computed from it. The came

is true of (2a) and (2b) when the signal is not present. Thus, there are
really two proba'bilities involved in the detection process--the probability

of a (correct) detection P(D) and the probability of a false alarm P(FA).

b. ROC Curves.

To see how these two probabilities are involved, let us

assume that the receiver measures some property of the input supplied to it,

such that the probability of detection is a monotonically increasing function

of the measured value of this property (i.e., when the measured value in-

creases, P(D) also increases). The receiver also contains a decision device

which operates in such a manner that when the measured value exceeds a certain

preset threshold the decision is "yes", while if the threshold is not exceeded,

the decision is "no".

We now see that the probabilities P(D) and P(FA) are

functions of both the threshold setting and the input signal-to-noise ratio.

Consider first the effect of the threshold setting. If the threshold is set
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extremely high, it will rarely be exceeded, regardless of whether a signal is

present or not; hence P(D) and P(FA) are very small. At the other extreme, if

the threshold is set very low it will be exceeded virtually all the time and

P(D) and P(FA) are both near unity. itermediate values of the probabilities

occur for intermediate settings of the threshold. Consider next the effect of
the input signal-to-noise ratio. If the signal-to-noise ratio is exceedingly

small, there is practically no difference whether the signal is present or not,

and both probabilities are virtually identical, regardless of Che thresh6ld

setting. If, on the other hand, the signal-to-noise ratio is large, the thresh-

old will be exceeded more frequently when a signal is present than when it is

not; hence P(D) exceeds P(FA). The larger the signal-to-noise ratio, the

greater will be the difference between these probabilities and the more unam-

biguous the basis for decision.

If the probability of detection is plotted against the falje

alarm probabilityandthe decision threshold is varied for fixed values of the

input signal-to-noise ratio, the curves of the type illustrated below are ob-

tained. These are called ROC (Receiver Operatinp Characteristic) curves. The

VI

F.FA

straight line corresponding to zero signal-to-noise ratio is called the chance

diaonal. This represents the poorest possible performance short of deliberate-

ly making the wrong choice; it is the performance which would be obtained

simply by flipping a coin. When the signal-to-noise ratio is small but finite,

the ROC curve lies above the chance diagonal, indicating that at all threshold

s;ttings (except the limiting values cf -0 and +0) the detection probability

is higher. than the false alarm probability. As the signal-to-noise ratio is

increased, the ROC curves move upward away from the chance diagonal, indicating
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more favorable performance. The ideal goal of the upper left-hand corner

P(D)=l; P(FA)=O cannot be achieved unless the signal-to-noise ratio isiniA
! finite.

It should be noted that for any given signal-to-noise ratio the

C perfoimance of all possible receivers Lies between the appropriate ROC curve

and its image curve symmetric about the center of the square. The region be-

low the chance diagonal is of course of no interest, since it represents pur-

poseful errors. (it is interesting, however, to observe that it is impossible

to do any worse than the lower curve, because not enough information is avail-

able to enable a more consistently wrong choice to be made!) An optimum re-

ceiver operates on the upper ROC curve, whereas all practical, non-optimum

receivers operate somewhere in the region between the ROC curve and the chance

diagonal. All such receivers can theoretically be improved to the point

where the ROC curve is reached, but not beyond.

In summary, the particular ROC curve on which an optimum re-

ceiver operates is determined by the input signal-to-noise ratio. The point

on the curve at which the receiver operates is determined by the threshold

setting. If, foc example, the optimum receiver were adjusted to yield a con-

stant false alarm probability of 0.001, the operating points on all ROC cu'ves
would lie on a vertical line

P(FA) = 0.001

and the probability of detection would be an increasing function of the signal-
to-noise ratio.

c. Likelihood Ratio.

It has been stated that in order to make a decision, a re-

ceiver must measure "some property" of the input which is suitabl related to
the poaiiyof detection. Birdsall and Peterson show that the poet

which should be measured by an optimum receiver is the likelihood ratio, which

is the ratio of the conditional probability density of the observed input to

the receiver under the hypoth 3is that the signal is present, to the condition-

al probability density of the same under the hypothesis that only noise is

~Ipresent.
An explanation of what is meant by these probability den-

sities 6ay be helpful at thia point. A typical input to the receivei might

consist of a continuously varying random noise voltage to which is added a
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continuously varying signal voltage. We shall assume that the wave lasts for

a time T and is band-limited to a bandwidth W. Since the noise is a random

process, any discrete sample of the noise voltage, taken at any instant, is A

random variable. If xi denotes the ith sample, the probability density p(xi)

is a function such ihat pk'xi)dxi represents the probability that the voltage

has a value between xi and zi + dxi.

According to the sampling theorem it can be shown that if the

wave is sampled at regular intervals of~ 1/2W secondl, it can be completely re-

constructed from the 2WT samples, so that the wave may be described inter-

changeably either as a continuous function of time x(t) or as a sequence of

random variables, x1, x2, ... , oe where

n = 2WT (907)

Furthermore, when sampled at this rate the samples are all statistically in-

dependent, so that the joint probability density function of all n samples is

the product of the n individual density functions,

p(i) p(x) (908)

where x stands symbolically for the combination of all n values xl, o.. , x.

Suppose now a wave z(t) is presented to the receiver. It is

not known whether the wave consists of signal-plus-uoise or of noise alone.

Let pN(x) denote the conditional probability density function under the hypo-

thesis that only noise is present, and PSN(x) denote the conditional probability

density function under the hypothesis that the wave consists of signal plus

noise. Each of these functions is a product of individual functions like (908)

except, of course, that the functions have differentmlues depending upon which

hypothesis is assumed. The likelihood-ratio2,(x) is defined as

tw 5, x -(939)

An optimum receiver, if it is to yield the optimum performance

predicted by the theory, must be able to compute the likelihood ratio corres-

ponding to each input wave presented to it. The receiver is provided with a

threshold P such that the decision is "yes" (alarm) whenever 26) and "no"

whenever V[)<
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d. Explicit Results (White Gaussian Noise).
In order to obtain a practical solution it is necessary to

have explicit expressions for the probability density functions. In the fol-

lowing paragraphs we shall derive the results for the simple cases of two types

of signals in white Gaussian noise. "White" means that the spectrum level of

the noise is a constant, independent of frequency over the band W. "Gaussian"

means that each of the individual samples has a Gaussian (or normal) distribu-

tion, xi2

pN'(xi) = I e 2N9i0)

where N is the variance of xi, which is proportional to the noise power. (The

noise voltage is assumed tc have no d.c. -omponent, so that its mean is zero.)

The joint probability dersity function under the hypothesis of

noise only is, from (908),

Yxi

2

= I-I 1 j
P(X) = e

1 1  2

(2IN)n/
2 e (911)

Except under the simplest assumptions the computation of the

lJkelihood ratio becomes very difficult. We shall limit our discussion to

two simple but important cases: (1) signal. known exactly and (2) signal con-

sisting of white Gaussian noise.

Case 1: Si al Known Exactly.

Let xi denote the voltage of the i
th sample as before,

and let s i denote the contzibution of the signal and ni be the contribution

of the noise, so that

xi  = si + ni  (912)

Now, if the signal is known exactly, each of the si is a known constant, and

only the noise ni contributes to the randomness of xi . Hence the probability

density function under the hypothesis that a signal is present is

1I 2I ~PSN(X)= l e 2
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_1- .-xi -si)

Y11

p'SN (X) e NL=1(93

1 - si)
(x)

1 - .

(21TN)/ 
e

or N s + 1 V -

e(x) = e L:- e X, (914)

From (914) we see what type of operation an optimum receiver

should perform. It must compute the sum appearing in the exponent of the

second factor, which, from the sampling theorem, is

NIT T
Qi -2W s(t)x(t)dt (915)

= 1 0

This is the correlation function of the input x(t) and the kncwn signal s(t).

The first factor of (9"4)" according to the Case 1 a,,sumption,
is a known constant. In fact, each term s 2reesnstequeofaaml

1represents the square of a sample

of the signal voltage, which is proportional to the signal power. (If we as-

sume that the voltage is applied across a resistance of on3 ohm, the square

of the voltage may be considered to be equal to the power.) Since there are

n = 2WT samples, the average signal power S is

n2---isi2  (916)

and the signal energy is

n
E , S T = s7)

Hence the exponent in the first factor of (914) is
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1_n_ WE -E

1 N0  (918)

where
N (919)

is the noise power per unit bandwidth.

In view of the above, we see that establishing a threshold;

forZ(x) is equivalent to establishing a threshold ot for the sum (915), such

that

_(E/No + C), =e (920)

The probability of a false alarm is the probability that

1

under the hypothesis that the xi contain noise only. To evall.ate this proba-

bility, we note that each of the xi is a Gaussian random variable with zero mnearl

and variance N. Since the si are known constants, the variance of sixi/N

is si2/N. Furthermore, because of the statistical independence of the xi, the
1 n

sum . sixi is a Gausd.Aan random variable with zero mean and variance"' Ni=l

in_-1 n 2 2E (921)N No

The false alarm probability is therefore

[N - No y2

P(FA) = 4 e4E dy (922)

where n
y =xi 2  (923)

The probability of detection is the probability that the above

s,.rAexceeds 0 under the hypothesis that the xi contain a ignal in addition t)

noise. In this case xi is i Gaussian random variable with mean si and variance

i! N, and sixi/N is a Gaussian random variable with a mean of si2/N and vari-
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ance s. 2 /N. The sum therefore has both a mean and a variance of 2E/N 0 , and the
41"  probability of detection turns out to be

CO 0
r -1( )2

p) 4E No dy

4E 4y, (9"4)

where

y' = y -2E/N o

We can get a little better insight into the statistical nature

of the decision process if we plct the probability density functions for both

of these distributions. Both distributions are Gaussian and have the saiie
variance, 2E/No. The distribution for noise alone has a zero mean, whereas

the distribution for signal plus noise has a mean of 2E/No. Hence a plot of

the two functions would look nre+Ly much like the sketch shown below. The

'o - S,%~ lu ~s

or,

dashed line drawn at y = is the decision threshold. If the measured value

of y lies to the left of , the decision is "no"; if it lies to the right,the

dscisicn is "yes". If only noise is present, the probability of a false alarm

is represented by the cross-hatched area under the tail of the "noise only"

curve. If a signal is present in the noise, the probability of detection is

represented by the area under the "signal plus noite" curve to the right of

the line y =o(.

The separation of the maxima of the two curves (the means of the

two distributions) is 2E/No. It is quite clear that the ability to distinguish
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the signal from the noiseis directly related to this separation. On the other

hand, the spreading out of the curves, due to the variance, causes overlapping

and makes the decision more difficult. The effective output signal-to-ncise

V ratio of the system, which we shall denote by the symbol d, may be defined as

follows:

WS s2 IIEN OF IO)
[DIFFERENCE OF MEANS] LDI RCEO As)(9)d L-- -T - c (925)
LSTANDARD DEVIATION j VARIANCE

Applying this formula to the Case 1 probability distributions -hcwn above, we

obtain

d (2E/N -O)2 2E (926)
~~o

or, by substitution from (917) and (929),

d = 2WT (926a)

If we interpret the parameter d as the output signal-to-noise ratio, we may

say that the optimum receiver in Case I has a signal processing gain of 2WT,

which represents the number of independent samplea in the input wave. We may

bypass the concept of output signal-to-noise ratio, however, and treat d simply

as a parameter relating the input signal-to-noise ratio to the performance of

the system as expressed by the detection probability and false alarm probabil-

ity. Using the transformation

Noy y

2E d

we may rewrite (922) and (924) in the following form

P(FA) 1 e /2 d1  (922a)

~ Pt PD) . e-12 dl (924a)

S Here we have two parametric- equazions inx, from which the ROC curves for Case :,

i may be computed for any desired value of the parameter d. Sample curves are

S plotted on accompanying graphs in both Cartesian coordinates and Gaussian prob-

ability coordinates.

358



/,o

z

1? _ _ _

NORMAL ROC CupVES$

359



,q 
-- 121-  

-

, Y/ J '
.7 - /// _

005

. /- / ,

NORMAL ROC CURVES

360



Equation (926a) may be turned aiound and solved for S/N to eval-

uate the input signal-to-noise ratio required to achieve a given level of per-

formance

S d (927)

N 2WT

The decibel equivalent of this signal-to-noise ratio

10 log~ K 10log ( 927a)

is the required input signal differential and has a significance similar to
Cthat of the recognition differential. To establish the required level of per-

formance we may specify both a minimum detection probability and a maximum

false alarm probability. These two probabilities are the coordinates of a

point on the ROC diagram. Out of the entire family of ROC curves there is one

V which goes through this point. If the value of d corresponding to this curve

is inserted into (927a), together with the bandwidth and duration of the wave,

the required signal differential at the input to the receiver may be computed.

(It should be remembered, however, that (927a) refers to the case in which the

signal is known exactly, which represents a different physical sitiation from

V that which occurs in aural detection.)

Signal processing of the type suggested by the preccding anal-

ysis is called coherent processing because the incoming wave is correlated with

a known signal. This type of processing is applicable to active sonars in

which an exact replica of the transmitted pulse is stored in a memory and is

used as the reference in the correlation process. There are two well-known

methods of implementing the mathematical procedure indicated in (915). One

method involves sampling the incoming wave and the stored reference at the

proper rate and performing the multiplication and summation indicated on the

left side of (915) in digital fashion. The simplest way of doing this is to

clip the waves, throwing away amplitude information, but retaining the polarity.

The multiplication and summation can then be done with flip-flop circuits.

This method involves a loss of about 2 db in the clipping.

A second method involves the use of a matched filter. A matched

filter is one whose impulse response function is matched to the waveform of the

transmitted pulse. The impulse response h(t) is the output obtained when a

unit impulse (or delta function) is applied to the input. It may be shown that
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if an input x(t) is applied to the filter, beginning at t = 0, the output may A

be expressed as the convolution integral
t

y(t) = h(t-v) x(V) d'r (928)

Suppose now that the transmitted signal is s(t), 0 :- t _ T. The impulse

response function for a watched filter designed for this signal is

h(t) = s(T-t), 0 t !- T

h(t) = 0, otherwise (929)

The output of this matched filter when the input is x(t) is

y(t) = f s(T-t+v) x(V) d °, t T (930a)

y(t) f S s(t-t+) xQ r) dt, t 2: T (930b)

It is seen from (930a) and (930b) that the output of the filter builds up with

time until a maximum value is reached at t = T, 4nd then begins to drop. At

this time the output is

y(T) = f s(t) x(t) dt (930)
0

which is the desired correlation function (915).

Case 2: Signal Consists of White Gaussian Noise.

In Case 1 the maximum amount of information is available

concerning the signal. In Case 2 we assume that nothing is known except the

statistical properties. The signal consists of white Gaussian noise filtered

to the same bandwidth as the background noise. The average signal power is S.

The probability density function under the hypothesis of noise only is the

same as in Case 1 (911). If the signal is present, each of the samples xi

of the input wave includes both a sample si of the signal and a sample ni of

the noise, as indicated by (912), but this time each si is a Gaussian random

variable with zero mean and variance S, the noise samples being also Gaussian

,random variables as in Case 1. Now, the sum of two Gaussian random variables

is itself a Gaussian random variable whose mean is the sum of the individual

means (zero in this case) and whose variance is the sum of the two variances

(S+N in this case). Hence the probability density functio,. is

3. n i 2

PSN(X) 1[2N)n1 e (931)
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1 n

Xi~x - irNn/2 e2(N:;s) i=l
[2Tr(NhsinI2 -N _ 2

e

SS 2
(+) ( (932)

I Here we see that the optimum receiver must calculate the sum of

the xi2. This suggests a square-law detector and averager, which measures the

total energy in the input wave. All other factors in the likelihood ratio are L

known constants. Hence the criterion for decision,

can be expressed in an equivalent form in terms of OC, such that

2 2xi > O (933)N i=l -

if we define the parameter o(as follows
2

( N n/2

The probability of a false alarm, originally defined as the

conditional probability of £(x), 3 under the hypothesis of noise only, may

now be expressed equivalently as the conditional probability of (933) under the

same hypothesis. But when only noise is present, each of the xi is a Gaussian

random variable with a mean of zero and a variance N, so that the variance of

xi/rl is unity, The sum (933) therefore has a chi-square distribution with

n degrees of freedom. Similarly, when a signal i.9 present, each cf the xi has

a Gaussian distri4bution with zero mean and variance N+S. For this case (933)

must be expressed in the form

1 4 i2 > N a 2  (935)
N+S 11 - - N+S

* The sum on the left side of (935) now has a chi-square distribution with n

degrees of freedom.

It can be shown that when the number of degrees of freedom is

large, a chi-square distribution approaches a Gaussian distribution. If we letn
y = inr x2 (936)

N xi
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the Gaussian approximations to the chi-square distributions have the following

characteristics:

CONDITION MEAN OF y VARIANCE OF y

Noise only

Signal plus noise eN_ (n-+)

The false alarm and detection probabilities are

P(FA) = 1 f e- y 2/ 2 dy (937)

where
Y, = F2 -- i i (938)

and

P(D) f e-Y2/2 dy (939)

where 2N

y2 = NS0 - (940)

In attempting to evaluate the parameter d for this case by sub-

stituting the appropriate values into (925), we encounter the problem that the

variances of the two distributions (noise and signal-plus-noise) are not the

same. However, in evaluating detection probabilities we are interested primar-

ily in the detection of signals near the treshold, and this occurs when the

signal-to-noise ratio is small, i.e., when

S << N

Under these conditions the two variances are very nearly equal, and d is ap-

proximately

N +S=nj nj

d 1/2

(2n-l) [ +T - 1 2  (941)

If

n = 2WT >1

and S/N << 1
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equation (941) reduces approximately tt,

d = n( = WT (941a)

These results show that when the input signal-to-noise ratio is

low, we may use the same ROC curves as we did in Case 1, provided we re-define

the parameter d. In this case d is proportional to the square of the input

signal-to-noise ratio, indicating a greater difficulty in detecting very weak

signals. Solution of (941a) for the signal-to-noise ratio in terms of d yields

S
S W (942)

or
10 log S/N = 5 log (d/WT) (943)

It will be noted that since the signal in this case is not
known, we are unable to match the incoming wave to a replica of it. Signal

processing of this type, in which only the average properties of the signal

are known, but not its detailed. structure, is called incoherent processing.

Comparing coherent with incoherent process.in we note that in coherent pro-

cessing the required input signal differential goes as -10 log WT, whereas

in incoherent processing the input signal differential goes as -5 log WT,

where W and T are the bandwidth and duration of the signal. It should be noted

also that we have considered only one ideal case of each type of processing.

Signals with other characteristics have been examined, as well as other types

of processers (e.g., half-wave rectifier in place of square-law detector),

and the results can usually be approximated by either thq coherent or the in-

coherent formula, except that the parameter d is mltiplied by an efficiency

factor less than unity.

In the preceding analysis it was assumed that the square of

the input voltage is averaged over the duration of the signal, as indicated by

the sum of the xi2 in (936). By the sampling theorem this sum is equivalent

to an integral of x2(t) over the same interval of time, the total energy in the

signal being
Sn

= -L x2 = fx 2(t) dt (944)

A common way of mechanizing this mathematical procedure is to feed the input

into a square-law detector and to pass the output of the detector through a
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filter having an integration time T. In practice, however, it is not always

feasible to match the integration time of the filter to the duration of the

signal. Failure to achieve a match degrades performance and results in a

higher required input signal-to-noise ratio.

Let T' be the filter integration time. Suppose first that

T' < T. In this case only a portion of the sample T' seconds long contributes

to the output of the receiver. The number of independent samples in (936) is

only 2WT' instead of 2WT. Hence the required input signal differential (943)

is S d
lOlog = 5 ogT-7

= 5 log d + 5 logT ,  (945)

Suppose next that the integration time is too long, so that T' > T. In this

case (936) becomes

2 1 T1 i2
y= l

When a signal is present, 2WT of the 2WT' samples contain the signal, whereas

the remaining 2W(Tl-T) samples contain only noise. Hence the mean of the dis-

tribution under the hypothesis signal plus noise is (neglecting + in comparison

with n)

2WT N + 2W(T-P)
N

j The value of d, which is given by (941) for the ideal case T = T, becomes

d = 2 [ ' + 2WT I

-4WTt~ l~ TN J

which, when S << N, is approximately

d = WT )S)

The required input signal-to-noise ratio is

S d_ T'
N WTT

and the signal differential is
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lO log 5log + 5log - (945a)

it is seen that in both (945) and (945a) the second term on the right is posi-

tive, indicating an increase in the required signal differential. The effec'

of the mismatch may therefore be written as a single equation

1 - 5 log + 5 log (945b)

e. Relationship to Recognition Differential.

From the preceding discussion it is clear that the deficiency

in the concept of recognition differential is the absence of any reference to

false alarm probability. This does not mean, of course, that false alarm

probability is not present in the aural detection process, merely that it is

not present explicitly. Measured values of the recognition differential are

obtained from tests of human operators who set their own threshold of detection

through a psychological desire not to make mistakes in either direction--false

rest or false alarm.

Urick and Stocklin* have made an interesting comparison of the

theory for incoherent processing with the observed values of the recognition
differential. On the assumption that the process of detection by the ear is

similar to that of the optimum receiver for Case 2, they applied equation

945b) with the following numerical values:

W =50 cps (critical bandwidth of the ear at 800 cps)
T' = 1 second (approximate integration time of the ear)

P(D) = 0.5
P(FA) =0O.05

If the probability of detection ,is 0.5, the lower limit of integration in

(924a) is zero, so that

CV = d

if the probability of a false alarm is 0.05, the lower limit in (922a) is

-= = 1.645

or

d = 2.7

*R. J-. Urick and P. L. Stocklin, "A Simple Prediotion Method for .thp

Signal Detectability of Acoustic Systems," NOL White Oak Report
NOLTR 61-164, 20 Nov. 1961.

367



From (945b) the signal differential relative to the noise spectrum level is

S S

l0 log N = lO log N

= 5log - + 5log -

= 10.7 - 10 log T, T 1 sec.

= 10.7, TZ 1 sec.

This result is in fairly gooO agreement with measured values of the recognition

differential. The authors point out that the agreement would be better if a

larger value were used for the critical bandwidth of the ear, as has been sug-

gested by recent measurements. It will be noted also that the agreement would

be better if a satiller value were used for the false alarm probability.

The preceding example illustrates the fact that the signal dif-

ferential given by (927a) for Case 1 and (945b) for Case 2 may be treated as

recognition differentials. Once the maximum allowable false alarm probability

has been specified, the value of d for P(D) = 0.5 is determined and this, to-

gether with the WT product of the signal, determines the value of the signal

differential.

Also, if values are selected for P(FA) and WT, the probability

of detection may be computed as a fuxiction of the input signal differential.

The accompanying graph shows curves for both Case 1 and Case 2 forI!

P(FA) = 0.01

and 2WT = 400

Sio -r o /
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TECHNOLOGY OF UNDERWATER SOUND
REVISED NOTES

ECHO -RANGING

In this section it will be our purpose to analyze the performance of echo-

ranging sonar, chiefly from the point of view of predicting detection ranges.

Since the performance of a sonar depends upon whether the background inter-

ference is predominantly noise or reverberation, we shall consider the two

cases separately. We shall begin by computing the echo level, which is

applicable to both cases.

A. Echo Level. A

The echo level is computed in four steps, as was mentioned in the

introduction to the discussion of decibels and indicated in equation (203). The

steps are as follows:

(I) Source Level. The acoustic energy transmitted by the source

izi expressed in terms of the intensity of the outgoing wave at a standard

reference distance of 6ne yard. In the sonar equation this is expressed in

decibels as the source level So . The relation between the source level and

the radiated acoustic power of an onnidirectional transducer is expressed by

(238) and (239). For a directive transducer we must include the directivity

index defined by (752) and (753). The source level along the beam axis is

S0 
= 10 log P + D + 71.7 db//bz (1001)

where

P = radiated acoustic power in watts

and
D = transmitting directivity index

The acoustic power may be expressed in terms of the input electrical power

Pin and the electroacoustic efficiency ! EA of the transducer
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P = AEA Pin (1002)

r 0 logP 0 0log Pin Neff (1002a)

where Neff is the efficiency loss

Neff = -l0 og11 (1003)

(2) The propagation 1oss N~ from the one yard point to the target.

(3) The target strength. When the outgoing wave strikes the target,

it is scattered in all directions. In re-radiating the sound, the target acts as

a source. The returning wave is treated in the same manner as the outgoing

wave. The target strength is a measure, in decibels, of the ratio of the

reference intensity of the returning echo at one yard from the target to the

incident intensity of the outgoing wave as it strikes the target. Let

I = intensity of outgoing wave at target

I' = index intensity of returning echo

Then the target strength is

T 10 log (1004)

(4) The propagation loss of the returning echo.

The echo level LE is the intensity level of the returning wave as it

reaches the transducer. The complete process described above may be

expressed by the simple formula

LE=So+T -ZNw (1005)

1. Target Strength.

The source level and propagation loss have been discussed

above. Let us now consider the target strength.

a. Target Strength of a Sphere.

To irit:oduce the subject, let us first consider the echo

formed by a hypothetical target consisting of a perfectly scattering sphere of

radius a. In all cases of practical interest the target is far enough away from
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the transducer that the incident radiation may be considered as a plane wave.

The projected area of the sphere which intercepts the incident wave is ra 2 .

If the incident intensity is I, the intercepted power is 7ra 2 I. Let us assume

that the sphere scattersall this power uniformly in all directions, acting like

an omnidirectional source. The index intensity il is the ratio of the total

scattered power to the area of a sphere of radius 1 yard, as indicated by

equation (237). Thus,

I a (1006)

Substituting (1006) into (1004), we obtain for the target strength of the sphere,

n a
z

T = 10 log-r (1007)

or

T 10 log ) (1007a)

The target strength of such an ideal sphere is tabulated below as a function of

j the radius

Radius Target Strengtha 
T

(yds) (db)

1 -6
2 0
4 6

10 14
20 20
40 26

100 34

These computed values agree remarkably we]l with observed values for

submarines, as we shall see.

b. Other Targets.

If the sphere is not a perfect scatterer we may take

this imperfection into account by multiplying the effective intercepting area

by a factor a, so that (1007) becomes

T110 log --a 2 -t (1007b)1lg r1z



This equation may be generalized to targets of other shapes by replacing the

numerator iraza with a symbol a representing the effective scattering area

of the target. T =-0lg 7r (1008)

The effective scattering area a is more commonly used in radar work; the

target strength T is more commonly used in sonar work.

c. Experimental Measurements. 14

A series of tests were run several years ago on spheres

of about one yard diameter, using sound waves of various frequencies. The

results of the measurements, although they showed considerable variability,

nevertheless tended to confirm the validity of the theoretical formula. The

observed target strengths ranged from the theoretical value to about 6 db

higher.

Target strength measurements of submarines in general

show a strong dependence on aspect. As is to be expected, the smallest

values are found for bow and stern aspect and the largest values for beam

aspect. The following table lists generally accepted values for typical

submarines.

Submarine Approximate
Aspect Target Strength

db

Bow, Stern 10
Beam 25

Random 15

The above values should be considered merely as nominal values. Whenever

measurements are made as a function of aspect, the experimental curves

usually show strong spikes and depressions, indicating wide fluctuations in

the observed values.

It is of interest to compare the observed results with

a rough theoretical cal.culation based on formula (1008). A typical beam

aspect submarine looks somewhat like an ellipse about 100 yards long and
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I
10 yards wide. The area of the ellipse is 2507r square yards, and assuming

perfect reflection the target strength would be
~250Tr

T = -18 db4 r

For the bow and stern aspect the projected area is roughly 2 5w, so that the

target strength would be
T =57 - 8db

Considering the roughness of the computations, the agreement with observed

values is quite good.

Target strength appears to be practically independent

of frequency so long as the dimensions of the target are large compared with

the wavelength of sound.

In order to obtain experimental values of target strength,

it is necessary to measure the other three quantities (LE, So , and Nw) in

equation (1005) and to calculate T from this equation. The practical diffi-
culties encountered in obtaining reliable results stem from the problems

involved in measuring these three quantities. One of the serious difficulties

is the large fluctuations which continually occur in the echo level.

2. Effect of Deviation Loss

The echo level as defined by equation (1005) applies only to

targets situated on the maximum response axis of the transducer. If the
target is in some other direction (0, 4) away from the axis, the detection

capability of the sonar is reduced. Two effects must be considered:

(I) The intensity level of the transmitted sound is reduced because of the

transmitting deviation loss. The echo level is therefore lower by the same

amount. (2) The returning echo is received in a direction of reduced receiving

response. So far as the response of the sonar is concerned the echo level

must therefore be reduced by an amount equal to the receiving deviation

loss. The effective echo level, as sensed by the transducer, is

LE(O, ,) So - N(e,4) - N'(6, )+T 2 Nw (1009)
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14

where

N(O, 4) = transmitting deviation loss

N'(9, 4) receiving deviation loss

as given by (706) and (706a). r

Deviation loss may occur in either of two ways. First, since L
most transducers oossess directivity in the vertical plane it is possible for

a target to "get under the beam" or "over the beam. " This may occur when-

cver the transducer is shallow and the target is deep, or vice versa. Suppose 4
the depths of the transducer and target are Z1 and Z 2 , respectively, and the

slant range is r. Neglecting the ray curvature due to refraction, the angle

off the beam in the vertical plane is given by
: Z2 - Z1 Isine - I (1010)

r

Since appreciable deviation angles occur only at very short ranges, the

assumption of straight-line ray propagation does not introduce appreciable

error.

119AWSPUCER.

TA 9, - T

Deviation loss may also occur in azimrAth when the transducer

generates a beam with horizontal directivity. This should not normnally be a

serious problem, however, because in a properly designed sonar there should

be sufficient overlap between successive horizontal beams or between

successive positions of a horizontally stepped beam (used as a searchlight),

so that all azimuths are covered with a deviation loss of not more than 3 db.
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3. Note on Positive Values of Target Strength

The fact that the target strengths of submarines are positive

indicates that the index intensity of the scattered wave is higher than the intens-

ity of the incident wave, This sometimes causes confusion because on first

thought it appears to violate the principle of conservation of energy. However,

a more careful consideration of the situation shows that this is not the case.

The numerical value of the index intensity depends upon the standard reference

distance at which it is defined. As explained previously, the index intensity

is really only a mathematical fiction. At large distances from a source of

finite dimensions the waves appear to have come from a point. For the purpose

of describing the energy transmission, it is standard practice to refer propaga-

tion loss measurements to a distance of one yard from a hypothetical equivalent

source. The index intensity does not therefore represent the actual intensity of

a real wave. It will be noted that if a reference distance of 100 yards had been

selected instead of 1 yard, the target strength and the propagation loss would

each have been 40 db lower.

4. Bi-static Echo-Ranging

In bi-static echo-ranging operations the projector and hydrophone

array are separated from each other. There are two differences between

bi-static and mono-static echo-ranging. First, the propagation loss is not the

same for the two directions of travel. Second, the target strength is diffelent.

The bi-static target strength involves two angles relative to any fixed dire.ztion
in the target. The bi-static target strength is a maximum when the incident ard

reflected angles, relative to the beam of the target, are eoual. Me-suiemeLet o

bi-static target strength is considerably moae complicated than conventional

target strength measurements, since two angles are involved.

B. Noise - Limr.ited Ranges

I. Noise

Interfering noise arises from a number of sources, including the

ambient noise of the sea, noise caused by the vehicle which supports the
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sonar, and noise caused by the motion of the sonar through the water. Noise

originating within the sonar, its installation, or its supporting vehicle, is

called self-noise. The overall noise which interferes with the echo is the

resultant of all the individual contributions.

Since the symbols N and N o have been used in a previous section

to denote the noise power and power per unit band, respectively, we shall use

the symbols LN and LN to denote the corresponding levels, the band level

and the spectrum level. If the band width of the receiving system is W and the

spectrum level is evaluated at the geometric mean frequency in the band, then

from (223)

LN = LNo + 10 log W (1011)

a. Ambient Sea Noise.

Reference has already been made to the Knudsen curves

which relate the average ambient noise to the acoustic frequency and the sea

state. These curves can be approximated reasonably well by equation (811)

which is reproduced below

Lamb = -5 4 + 30 log(n s + 1) - 17 log f db//b/cps (811)

where

Lamb = spectrum level of ambient noise in db//pb/cps

"Ils = sea state

f = frequency in kc

The Knudsen curves are still the most widely used reference for ambient sea

noise. They are applicable only to frequencies above about 500 cps. Subse-

quent measurements have shown a significant departure from the Knudsen

curves at low frequencies. Extensive measurements have been made by

G. M. Wdnz, of the Navy Electronics Laboratory, and others. Wenz ts

curves agree with the Knudsen curves reasonably well at the higher

*. M. Wenz, Journal of the Acoust. Soc. of Am., Vol. 34, pp 1936-1956

(1962)
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frequencies, but below about 1000 cps they begin to taper off from the

constant slope of -5 db per octave. The spectrum level reaches a maximum

at 400 to 500 cps and then drops at lower frequencies. At very low frequencies,

below about 20 cps, the noise begins to rise again, showing a strong frequency

dependence of about -8 to -10 db/octave.

Another factor which contributes significantly to the ambient

noise at low frequencies is shipping. Because of the low attenuation, sound

generated by ships travels great distances at very ]ow frequencies. In areas

of high shipping density this man-made noise becomes widely diffused and is

sometimes the dominant interference. On the other hand, at frequencies in the

kilocycle range ship noise is a local phenomenon which is troublesome only

in the vicinity of individual vessels

Effect of Directivity.

We have seen previously that where the noise field

is isotropic the effective noise as sensed by a directive transducer is less than

ambient by an amount equal to the directivity index. If LN denotes the effec-

tive noise spectrum level as sensed by the transducer, then (783) may be

rewritten as

0 LN - D (783a)

If the noise field has directional properties, the effective noise spectrum

level must be computed from (779) and (785).

b. Vehicle Self-Noise

Sonars which are mounted to the hulls of large ships are

generally bothered by a rather high background noise. This noise increases

with ship speed and with Eea state, and under most operating conditions

greatly exceeds the arrbient sea noise. It is common practlce in destroyer

sunar installations to measure the overall noise as sensed by the installed

equipment. Such a measurement automatically includes the ambient sea

noise, the machinery and flow noise of the ship, and the directivitv of the

transducer.
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The noise generated by a helicopter is an important factor

in the performance of helicopter dipped sonar equipments. Although a con-

i siderable amount of work has been done in studying the effect of vehicle noise

to: on dipped sonar transducers, it is still not definitely known whether the noise

sensed by the transducer is caused directly by the engines and rotor blades or

by a disturbance of the water surface set up by the down-wash. It has been

} established that the noise in the water directly underneath the helicopter

decreases with depth below the surface. It approximately follows the inverse

square law, such as would be expected if the cause of the noise were a point

source on the surface of the water.

It has also been found that the helicopter noise has directional

characteristics. Directly under the vehicle the noise appears to come from a

predominantly vertical direction, as might well be expected. Because of this

j directional dependence the effective noise as sensed by the transducer is not

given by (783a) but depends, instead, upon the response of the transducer in

the vertical direction. This may be written mathematically as follows

LNH = LNH - Nv (1012)

where

LNH = helicopter noise spectrum level as sensed by
the directional transducer

LNH = helicopter noise spectrum level as sensed by
an omnidirectional hydrophone

Nv = deviation loss of the directional transducer in
the vertical direction

If (1012) is rewritten in the following form

L IH = LNH - (Nv D) - D

and compared with (783a), it is seen that the quantity

LNH - (Nv - D')

enters in the same way as zhe isotropic (i.e., omnidirectional) spectrum

level LNo. This quantity may be termed the equivalent omnidirectional noise

of the helicopter. Any noise which is directed at right angles to the sonar
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beam may be treated as an omnidirectional noise if it is first corrected by

subtracting the term Nv - D.

c. Noise of Towed Sonar

Transducers intended to be towed through the water are

mounted in hydrodynamically streamlined housings, often called "fish." At

low speeds (below 15 knots or so)I the noise is usually below the ambient sea

noise. At higher speeds the noise increases rapidly. Although considerable

effort has been directed to the study of flow noise, the development of high-

speed towed sonars still appears to present difficult problems.

d. Resultant Noise

When noise from more than one source is presen. at the

input to a transducer, the overall effect is determined by their resultant.

Consider the case of two sources. For rough work it is customary simply to

consider the one which produces the higher level and to ignore the other. The

maximum error involved in this procedure occurs when the two levels are

cqual and zmounts to 3 db. If more accuracy is desired, the two may be

combined on the basis of random phases by adding intensities. (See equation

(185)). However, before combining them, one must be sure they are all

expressed on a comparable basis. For example, they must all be

expressed either as spectrum levels oi as intensity levels having the same

bandwidth. Also, they must all be expressed as equivalent omnidirectional

noise, in w~nich case the receiving directivity index D is subtracted from the

resultant, or else they must be expressed as effective values as sensed by the

transducer, such as given by (783a) or (1012).

To combine the noise spectrum levels we add the intensities

per unit band. Let Jl and J2 be the intensities per unit band corresponding to

spectrum levels LN, and LN2 for the noise from two different sources, so that

LNI = 10 log JI (1013a)

and LN2 = 10 log J2  (1013b)
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The resultant intensity per unit band is

J = Jl + J2 (1014)

and the resultant spectrum level is

LNo = 10 log J (1015)

We seek a relation between LNO)and LN1 and LN2 . Solving (1013a) and

(1013b) for J1 and J2 gives

Ji = 100 "1 LNI and J= 100" ILN 2

Therefore

LNo = 10 log (100.1 LN 1 +100.1 LNz) (1016)

Equation (1016) may be expressed in a form more suitable

£or computation. Let us define LNI as the larger of the two:

LN 1  .LN2 (1017)

Then LN2 = LNI - (LNl - LN2 )

00. LNI 0."1 LNI -0. 1 (LN-I .LN(
and LNo = 10 log l + + 10 ]0

Lo=LNI +10 log + 10

Let AL = 10 log I I+ 10 (08

Then LNo = LNI + AL (1019)

The accompanying graph shows AL as a functiou of LNI -LN?.

To compute the resultant of two noises LN1 and LN2 , of which LNI is the

larger (algebraically), form the difference LNI - LN2 , and find AL from the

graph. Add this to LNI. Note that to the nearest 0.1 db LNZ may be neglected

if it is more than 20 db smaller than LNI.
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2. The Sonar Equation

The sonar equation, as conventionally wri.'.ten, is a relation

among the various sonar parameters, applicable to the situation in which the

probability of detection is 50 percent. It can be seen prom equation (1005)

that for any given source level and target strength the echo level varies with

the two-way propagation loss. The propagation loss, in turn, varies with the

distdnce from the source. At short ranges very strong echoes are received,

but as the range increases,the echo level decreases until it becomes lost iT

the noise. The nominal detection range of a sonar is the range at which the

detection probability is 0. 5 and the echo level at this point is called the

minimum detectable level (MDL). For an omnidirectiona] transducer the

minimum detectable level is L 5 0 of equation (903). If the noise field is isotiopP;

(an assumption which we shall make throughout this discussion), the effectivc

noise level sensed by a directive transducer is reduced by an amount equal to

the directivity index. Hence the general expression is

= LN - D+M (1020)
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The levels expressed in (1020' are band levels in the input band of the receiving

system.

At the 50 percent point the echo level LE of (1005) is equal to the

MDL, L50 of (1020). The sonar equation is obtained by equating these two

levels.

So+T-2Nw = LN-D+M (1021)

3. Figure of Merit.

The figure of merit (FOM) of a sonar is defined as the difference

between the source level and the minimum detectable signal,

FOM = So - L 5 0  (1022)

If (1020) is substituted, the figure of merit can be expressed in the form

FOM = So+D - M- LN  (1022a)

Here it is seen that the source level, directivity index, and recognition

differential are properties of the sonar system (including the operator) and

hence are a measure of the quality of the system. Furthermore, in some

sonars, especially surface ship sonars, the dominant background noise is

generally self-noise and may therefore be logically considered a property of

the sonar system. In quieter sonars such as sonobuoys, where the background

is chiefly ambient noise, the figure of merit depends upon environmental condi-

tions as well as upon the sonar itself.

The relationship between the figure of merit and the maximum

allowable propagation loss is obtained by substituting (1021) into (1022a)

2 N, = FOM + T (1023)
The allowable two-way loss is thus equal to the figure of merit plus the target :

strength.

Another measure of sonar performance which is used for surface

ship and submarine sonars is the performance figure, which is defined as

PF = Source Level - Mcasured Noise Level (1024)

382

I_



Some ship sonars are provided with test instruments, which measure the effec-

tive noise level as sensed by the transducer, and it is this noise level which is

referred to above. The performance figure differs from the figure of merit in

that it does not include the recognition differential. It is useful as an objective

measure of the condition of the sonar.

4. Echo Excess; Detection Probability.

We have seen earlier, in the discussion of recognition differ-

ential for aural detection, that as the input signal differential is varied, there

exists a transition region in which the probability of recognizing an echo

varies from 0 to 1. A plot of this probability versus the signal differential
reveals an approximately Gaussian distribution with a standard deviation of
about 2.5 db. It is interesting to note also in connection with the statistical

detection theory discussed previously that a plot of detection probability versus

signal differential for a fixed false alarm probability also exhibits a distribution

which is approximately Gaussian, except at low levels of probability. It can be

shown that the Gaussian approximation to the distribution of the signal differential

has a mean M and standard deviation a as follows:

Case I, Signal known exactly:

M 10 log 2WT (1025a)

20 loge 10 8.7o = d' = d-i (1026a)

Case 2, Signal consisting of Gaussian noise:

M = 5 log d ( 525b)

10 log e 10 4, 3

= d' d' (1026b)

where d' is a parameter related to the false alarm probability as follows:

P(FA) =7- f e d 1  (10Z7)
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It will be noted that the a's are independent of the WT product of the signal and

that the a for Case I is twice that for Case 2. The numerical valu4.s for. a

false alarm probability of 0.01 are about 3.7 and 1.9, respectively. The

means M of the distributions are tht input signal differentials required for

0. 5 probability of detection and thus correspond to recognition differentials.

Up to this point we have considered only one of many factors

which contribute to variability in the detection of echoes, In order to predict

the performance of sonars under operational conditions we must include other

sources of variability, the major ones being:

(1) fluctuations in acoustic propagation,

(2) target aspect,

(3) operator variability and the effect of random noise,

discussed in the preceding paragraphs, and

(4) variability in the condition of the sonar equipment.

The values of the various parameters, such as source level, propagation loss,

noise, etc., which are used to compute the echo level and the background

interference level, are nominal average values. The actual values which exist

during any particular echo-ranging operation are subject to unpredictable

fluctuations and must therefore be considered on the basis of probability.

When the nominal values of the various parameters are such that the computed

echo level LE is equal to the MDL L50, the probability of detection is 0.5

(by definition). When LE exceeds L 5 0 , the probability is greater than 0.5;

when LE is less than L5 0 , the probability is less than 0.5. It is therefore

useful t. introduce the concept of echo excess, ALE, which is defined as the

difference between these two levels

ALE = LE L 5 0  (1028)

Because of the random nature of the sonar parameters, the echo

excess is a random variable. Unfortunately, the probability distributions of

many of the parameters are not accurately known and hence one can only guess
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at the distribution of the signal excess. It is generally assumed that the

distribution is Gaussian with a mean of zero. It is also logical to assume

that the contributions from the various inputs are statistically independent, so

that the variance (that is, the square of the standard deviation) of the signal

excess is equal to the sum of the individual variances. The probability of

detection of a sonar ping may therefore be expressed as follows

P(D) = r e d-9 (1029)

where a is the standard deviation of the echo excess. If a i is the standard

deviation of the ith input to the signal excess, then

0 = /Z i (1030)

j Let us now consider the contributions of the four items listed

a~pve.

(1) Although the variations in propagation loss do not obey

the Gaussian distribution law extremely well, the best fit for the available

data leads to a standard deviation of about 4. 5 db for one-way propagation.

The standard deviation for two-way propagation should be larger by a factor of

/2, that is, about 6.5 db.

(2) Since the sonar operator normally does not know the

aspect of the target, the target strength must be considered as a random vari

able. A reasonable estimate of the standard deviation is about 7 db.

(3) and (4). The operator variability and the equipment vari-

ability may be lumped together under the single category 3f figure of merit.

We have already seen that the operator variability amounts to about 2.5 db.

Exporience has shown that among the various individual installations of any

particular type of electronic equipn. ent in service use there is a wide variabilitk

in equipment operating conuition. Some installations will be in excellent

condition, others in very poor condition, with all graduations in between. The
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factors involved include such things as source level, directivity index, and

self-noise. Because of meager data any estimate of the standard deviation of

the figure of merit must be very rough. The figure of 7 db, which is some-

times applied to surface vessel sonar, appears to be reasonable.

The overall standard deviation of the echo excess is

5 = /6.57+7V+72 7 12 db (1031)

The sonar equation (1021) may now be modified to apply to other

probability levels than 0.5. According to (1029), to each value of probability

P(D) there corresponds an echo excess ALE, representing the amount by

which the required echo level must exceed the MDL (equation (1028)). The

modified sonar equation is therefore

So + T - 2Nw = LN - D+M+ALE (1032)

5. Noise-Limited Ranges.

Once the values of the parameters So, T, LN, D, M, and P(D)

(hence also ALE) have been specified, the propagation loss Nw may be

computed from (1032). If the propagation characteristics of the water are

known, this value of Nw may be converted to distance, thus determining the

detection range corresponding to the selected value of probability. It will be

noted that the above results are predicated on the assumption that the target

is located on the axis of the beam. When this is not the case, the transmitting

and receiving deviation loss N(O, <o) and N'(0, ) (706) and (706a) must be

subtracted from the source level.

C. The Doppler Shift

When a source of sound is moving toward the receiver, the frequency

of the sound as observed by the receiver is higher than it would be if the source

were stationary. Conversely, if the source is moving away from the receiver,

the frequency is lower. The same type of effect is observed if the receiver is

moving toward or away from the source. Furthermore, if the receiver acts

as a target, reflecting sound back to the source, the change in frequency
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observed at a hydrophone located at the source is approximately double that

observed in one-way propagation.

The phenomenon which causes these frequency shifts is called the

Doppler effect. The increase in frequency which occurs when the source and

target are approaching each other is popularly called up-Doppler; the decrease

which occurs wl.en they are separating is called down-Doppler. In echo-

ranging operations the frequency shift due to the motion of the transducer is

called self-Doppler or own-Doppler.

1. Target Doppler.

Assune that the sonar is stationary; only the target is moving

The only component of the target velocity which contributes to the Doppler shift

is the radial component, i. e., the component along tne line joining the source

and target. Let vT represent this component. Consider first the frequency

shift as sensed by an observer moving with the target. The following sketch

shows schematically the oatgoing wave traveling toward the right. Assume that

WAV 9: -d- tA RC, E I

R P

at a given instant of time the ta':get, traveling toward the left, is located at

the point P. Consider new the point Q, one wavelength behind P. While this

is moving with speed c, the target is moving with speed v1. . The target will

therefore meet Q at some inte_'mediate point R at some time t' later. During
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this interval of time the wave has traveled a distance ct' and the target has

traveled a distance vTt', and the sum of these distances is one wavelength.

Hence

X =(c+v . )t'

But from the point of view of an observer on the target, a complete cycle has

elapsed during this interval, so that the apparent wavelength is

ct'

The :ratio of the two wavelengtls is

c'+c T

The wavelengths are related to their respective frequencies by the familiar

formula t1)

Xf = c = \'f'

The ratic of the apparent to the true frequency is therefore 44

f) _ c v (1033)
f c

Consider now the return trip. In the following sketch

both tha target and the wave are both moving toward the left. Let the target

l be at T 1 at some given instant of time. During the time t' of one cycle as

measured by an observer on the target, the wave will have traveled to S, a

W AV -rA R 6 E T -F;i

distance of

v =ct,
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and the target will have traveled to T 2 , a distance of vvt'. As seien by a ..

stationary observer, the distance T 2S is one wavelength MI. Hence

(c -)t,

and

X' f" c- c - v. 0034)

where f" is the frequency as measured by a stationary observer at the sonax.

Combining t1033) and (1034) we obtain

i +
f=c+v- c (1035)

f C -Vr IcVI-
c

The Doppler shift Af is the difference between the frequency f" of the echo and

the frequency f of the transmitted wave.

2fvr

Af c (1036)

The speed of sound in water is of the order of 2800 to 3000 knots, whereas

the speeds of sonar targets are w'ell below 50 knots. Therefore in all pra.tt.c. 

situations

v.- <<1I
c l

and (1036) may be simplified approximately to

A 2fv (1037)

c

2. Self-Doppler

Let v represent the component of the sonar speed in thePs

direction of the target. The analysis in this case is identical to that of the

target Doppler, except that the shifts associated with the outgoing pulse and

the returning echo are interchanged. The resulting frequency shift is approx:-

mately Af 0 f_._s( 03 8) i
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3. Combined Doppler

If both the sonar and the target are moving relative t6 each

other, the resultant Doppler shift is the sum of (1027) and (1038)

2f (vs+v ) (1039)
c

Although the formulas for target Doppler and self-Doppler

are similar, there is a significant difference between the two effects in

regard to reverberation. Reverberation refers to the sound energy which is

scattered back to the sonar frorm objects in the ocean other than the target.

Scattering objects are normally stationary, or at worst have very small

Doppler speeds (as, for example, waves at the ocean surface). If the target

has an appreciable Doppler speed, the frequency content of the target echo will

be significantly different from that of the reverberation, and this has an

important bearing on the detectability of the echo. If, on the other hand, the

target Doppler speed is zero and only self-Doppler is prtsent, the frequrncy

content of the echo and reverberation are the same. I, should be pointed out

also that if the sonar has a large horizontal beamwidth the reverberation

received when the sonar is moving will be spread out in frequency, due to

different self-Doppler speeds in different parts of the beam.

If the frequency f is expressed in kilocycles, the Doppler

shift Af in cps, and the Doppler speed in knots, (1039) is approximately

Lf = 0.7 f (vs + vr) (1039a)

4. Minimum Required Bandwidth

The Doppler shift sets a lower limit on the input bandwidth of

the system, since the bandwidth must be large enough to allow all possible

echoes to come through. Including both up-Doppler and down-Doppler, che

minimum bandwidth is

W = 2Af (1040)

where Af is the Doppler shift corresponding to the maximum oxpected Doppler

speeds.
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D. Reverberation-Limited Ranges V
Reverberation differs from noise in that it is caused by the sonar

itself. Reverberation is the unwanted sound which is scattered back io the

sonar by objects in the sea other than the target. There are two basic types

of reverberation:

(I) Volume reverberationwhich is caused by scatterers

distributed throughout the volume of the water.

(2) Surface reverberation, which is the sound scattered back

from the boundaries of the ocean, top and bottom. However, since the

scattering characteristics of the upper surface are somewhat different from !

those of the bottom, the term surface reverberation is usually restricted to

scattering from the water-air interface, and the scattering from the ocean i

bottom is referred to as bottom reverberation.

Reverberation differs from noise in several ways. In the first place ]
its spectral characteristics are essentially the same as those of the trans-

nitted pulse and are therefore different from those of noise. Secondly, the

intensity of the reverberation varies with the rang-. at which the scatterers

are located, so that the reverberation level from any given pulse varies with

time. Thirdly, the intensity of the reverberation is proportional to the intens-

ity of the transmitted pulse, so that whenever a sonar system is reverberation-

limited, no improvement in the detectability of a target can be achieved by

increasing the source level.

1. Volume Reverberation

To simpJify the analysis we shall begin by assuming an ideal

ocean which is infinite in extent and in which sound waves spread out in

accordance with the inverse square law with no attenuation. These over-

simplifications will be corrected later. We shall begin with the sound as it is

emitted by the transducer and shall follow it out to the scatterers and then back

to the transducer,
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Assume that the duration of the pulse is t seconds. We are

interested in the total scattered intensity which is returned to the transducer

at any given instant. Consider the situation at a time t +,r seconds after

the initiation of the pulse. The leading edge of the pulse will have traveled

a round-trip distance of c (t +-r) during this tine, which means that the

scatterers causing the reverber:ation are located at a distance c (t + r)

from the transducer. The trailing edge of the pulse has been traveling for a time .

t, so that it is returned by scatterers located at a distance ct from the

transducer. Let

r - ct (1041)

Then the reverberation arriving at the transducer at time t + r is caused by

scatterers located within a spherical shell whose inner radius is r and whose

thickness is cV. In the analysis which follows we shall assume the thickness

of the shell to be small compared with the radius, i.e.,

iclt <<r

so that we may use the same value of propagation loss to all portions of the

shell. In cases where the pulse is of long duration, suitable corrections must

be made for the variations in propagation loss.

Let us now develop an expression for the reverberation level.

Let the index intensity in the direction of the beam axis be 11. The index

intensity in any direction (0, ) is

wherej (0, 4) is the relative transmitting response (702). Assuming inverse

square spreading without attenuation, the intensity of the outgoing wave at the

scattering shell is
~~i I ,rl z  (e @ -

I= rz (1042)

Assume next that the ocean is filled with scatterers, each of

which has a scattering cross section a yd?, and that there are nv of these

scatterers per cubic yard, If the shielding effect (due to one scatterer being

behind another) is negligible, the total scattering area per cubic yard is
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mv  = nv  (1043)

This quantity mv is called the volume scattering coefficient and, for the units

mentioned above, has the dimensions yd-1 . Consider now an infinitesimal el-

ement of area dA of the shell. Since the thickness of tne shell is jcv yards,

the volume of this element is +. A and the scattering area is -cmvdA.

The total acoustic power intercepted by the element is

jcA:Ilmvd A  = crlmvr d CD

where d is the element of solid angle corresponding to dA. If this power is
scattered uniformly in all directions (the assumption on which the measurements
of mv are based), the index intensity of the returning scattered wave is

dI1' = ~rImvr2da (1044)

4nr 1
2

In returning to the transducer the wave spreads out as Iir2. Its effect on the

transducer is proportional to the relative receiving response . There-

fore the received reverberation intensity is

dIRv = (1045)

Combining (1042), 1044), and (1045) and integrating over the sphere, we obtain

the total reverberation intensity

IRV - r2l-Ill mvj(e, )j'(e, ) dCL (1046)

If the distribution of scatterers is i -form, so that mv is constant, the reverb-

eration intensity becomes

rcz r = irr 2 11Mv 1 d

, .* Comparison with (786) shows that the integral in the above expression is the

reverberation fsctor, dR. Therefore

'' RV = r2

-k.Lrr'L I, m-j-dg 14aIRV
The volume reverberation level LRV is tb3 decibel eiuivalent of (1046) or

(1046a),
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LRV = 10 log IRV (1047)

As regards units of measurement of the various quantities, it iwill be noted

that rI is the standard reference distance of one yard. If r is measured in

yards, then rI = 1 yd; if r is measured in kiloyards, then rI = 10
-3 kyd.

Furthermore, since mv is measured in yd
-1 , cc must be in yd. This can be done

either by expressingrC in seconds and c in yd/sec, or by expressingt in milli-

seconds and c in yd/ms (or kyd/sec).

To apply the above theory to practical echo-ranging operations, we must

consider the physical situations involved. The simplest case to consider is

that of a highly directive transducer having a narrow beam. In this case the

reverberation comes from a small volume of the ocean, and the assumption of a

constant mv is reasonably valid. Furthermore, since the reverberating volume

is in the immediate vicinity of the target, we may assume that the propagation

loss for the reverberation is about the same as that for the target echo. In

adapting the reverberation intensity (1046a) to the real world, it will be re-

called that we originally had two r2-factors in the denominator, these being as-

sociated with the spreading loss, and one r2 in the numerator, associated with

the area of the spherical shell. In changing from ideal inverse square spread-

ing to actual propagation loss, we replace 20 log (r/rl) with NW. Hence the

reverberation intensity is

IRV ic~r2IimVdR (1048)

and the reverberation level, when r is in kyd, is

LRV = So - 2Nw - DR + l0 log(ic) + l0 log mv + 20 log r + 60 (1049)

where DR is the reverberation index (787)
i If the sonar has a wide beam, the assumption that mv is constant is of

doubtful validity The bulk of the volume scattering in many areas of the

oceans is due to one or more layers of plankton which migrate to different

levels at different times of the day, Additional scattering may arise from

bubbles near the surface. At depths below the scattering layers the volume

scattering coefficient drops to very low values. If the sonar beam is wide

enough in the vertical extent to encompass large variations in my, it is nec-

essary to compute an average value mv based on the integral appearing in (1046)-
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and. taking into account the refraction of the sound rays. To estimate the

spreading loss in this case, it will be noted that a larger quantity of rays

is involved, covering a greater spread of depths at the target range. Ideally,

the spreading loss which should be used is a weighted average over all the

scatterers. For most practical computations the inverse square law including

attenuation is probably a closer approximation to reality in this case than the

propagation loss to the target. If we make this assumption, the reverberation

level is

LRV, = So - DR + 10 log(cV) + 10 log my - 20 log r - 2r - 60 (1049a)

Volume scattering is also expressed in an alternate form in terms of the

volume scattering strength, Sv. The volume scattering strength is the target

strength of the scatterers per unit volume and is defined as follows

Sv = 10 log - m y  (1050)
4irrl

The similarity of volume scattering strength to the target strength of a dis-

crete object, as given by (1008), is obvious if we consider the scattering pro-

duced by a small but finite volume of water LV. According to the definition of

my, the total scattering area of the volume AV is mvLV, which corresponds to

the scattering area a-of the discrete target in (1008). Hence, so far as re-

verberation is concerned, the volume 4V is equivalent to a discrete target whose

strength is

TAV = Sv + 10 logAV (1051)

The concept of volume scattering strength may be applied to the case of a

narrow-beam sonar to yield an expression which gives a simple intuitive picture

of the scattering process. Let S)denote the effective solid angle of the beam,

such that

dR  = (1052)

Equation (1048) may then be rewritten as follows:

I ( - 2)lmv (1048a)RV 4r 1
2 10"2Nw

and the reverberation level, when r is expressed in yards, cr in yards, and

Al in steradians, becomes
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-RV= So 2Nw + Sv + 10 log (-Ctr 2 l)0 .(1049b)

Here we see that jcrr2 d1f is-the effective scattering voi~e AV which prqduces

the reverbe ation, and that the last three terms represent the target strongth

of the scatterers. Comparison with (1005) shows that the reverberatioh;level

haj been expressed in the same form As the echo level.

The v6luie scattering coefficient varies widely frcm place to place and

from time to time. The effect of the biological scattering layers has been

mentioned above. Measurements in the Pacific Ocean have shown a strong seasbnal

effect which has also been correlated with biological activity. The following

formula was derived by Dr. H. 0. Benecke from some early data taken during World

War II:

10 log m, = -73 + 10 log f (1053),

where f is in kc.

2. Surface and Bottom Reverberation.

Since the method of analysis is the same for both surface and bot-

tom reverberation, it will suffice to derive the equations applicable to the sur-

face case. Followirs 'he method employed for volume reverberation, we shall com-

pute the reverberati2a received at an instant of time t+-*seconds after the init-

iation of the pulse. This reverberation is returned from the scatterers whose

range from the transducer is between r and r+4c, where r is defined by (1041).

As maybe seen from the sketch below, the portion of the surface which contributes

to the scattering is an annular ring whose inner radius is PA and whose outer

radius is PB. We shall assume that the pulse length i-c is small compared with

P X A B
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the range r, 3o that all the rays between OA and OB strike the surface at sub-
stantially the same angle e.

Temporarily assuming inverse square spreading without attenuation, we

see that the intensity of the outgoing wave as it strikes the surface is given
by (1042). We shall define the scattering properties of the surface in terms of

the surface scattering coefficient, ms, which is defined as the scattering area

per square yard of the surface. The surface scattering coefficient is a aimon-

sionless number which is a measure of the fraction of the surface area which pro-

duces the scattering. The total acoustic power intercepted by an element of area

dA is ImsdA. If x iA the horizontal distance PA, the element of area is

dA = x dx d'

where $ is the azimuth angle measured in the plane of the surface. It may be

seen from simple geometry that

x dx = r dr

so that

dA = r drd0

In computing the index intensity dIl' of the scattered radiation from dA, we note

that virtually all of the energy is scattered back into the water and is there-

fore confined to a hemisphere. Hence

dij1, I ms r dr d (1054)
2=12

Finally, the effective intensity sensed by the transducer is

dRs - r1
2  '(o,$) dlI '  (1055)

rd

CQmbining (1042), (1054), and (1055), we obtain

, dl~s = II r1 2 ms(,) ',)
URS #r dr 0

In carrying out the integration over the ring we integrate the radial coordinate

from r to r+'ct. In accordance with the assumption that icr is small compared

with r, we may treat both r and 0 as constants ana simply multiply by c The

resultant intensity is therefore
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IRS c-msr d (1056)

Let us now remove the restriction imposed by the original assumption of

inverse square spreading by replacing 20 lcg (r/rI) with Nw, so that

Y, 7- = .rl)+ r
r r ,-- l 10

Also, the integral in (1056) defines an effective beamwidth A ,

,4 ( , ) d (1057)

0

The generalized form of (1056) is

IpS = c~s1A (1056a)27r 1 2 100 2Nw*

In a manner analogous to the treatment of volume reverberation, this

result may be expressed in terms of the surface scattering strength, which is

the target strength of the surface per unit area, defined as follows:

Ss = 10 log MR (1058)

From the definition of ms, the total scattering area of any small but finite

area AA is msAA. So far as reverberation is concerned, this area is equivalent

to a discrete target whose strength is

T4A = Ss + 1O log AA (1059)

Inserting (1058) into (1056a), we find for the stuface reverberation level W

LRS = 101ogpS

= So - 2Nw + Ss + i0 log (icrrA$) (1060)

where r is in yards, cr is in yards, and A4 is in radians. It will be noted

that 4-crA is the effective area of the surface insonified by the sonar beam

and corresponds to AA ir' (1059).

To apply thase results to bottom reverberacion we must insert values of

the bottom scattering strength Sb in place of Ss . The corresponding formula for

the bottcm reverueration level may be written as

LRB = so -
2Nw + Sb + 10 log (icrrO$) (1061)
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Equations (1060) and (1061) express the surface and bottom reverberation levels

i± a form similar to that of (1005) for the echo level.

It should be noted that in cases where the pulse is of long duration

the approximations made above are not valid and a mcre detailed analysis is

needed.

Considerable aork has been done in recent years, both theoretical and

experimental, in determining surface ana bottom scattering strengths. Recent

surface measurements by Chapman and Harris* have led to useful formulas for the

surface scattering strength as a fuinction of wind speed and grazing angle in the

frequency range from 400 to 6400 cps. At wind speeds belcw about 15 knots they

found that the scattering strength increases linearly with the logarithm of the

grazing angle at angles above approximately 15 degrees. At smaller angles the

scattering strength was found to be essentially constant, with an abr-upt change

between the two regions. The constant portion at the lower angles is believed to

be due to volume scattering of biological origin. At wind speeds of 20 knots or

more the linear dependence was observed down to the lowest grazing angles meas-

ured, indicating that the surface scattering is predominant. The following em-

pirical equation was derived from the measurements:

Ss = 3.3 2 log (e/30) - 42.4 logP + 2.6 (1062)

where 0 is the slope of the curve of SS vs. log e, expressed in decibels per

grazing angle doubled and is empirically related to the wind speed v (knots) and

the frequency f (cps) as follows: 1

A a = 158 (vf/3058 (1063)

A large amount cf data on bottm scattering characteristics has been

accumulated over the years, bt the wide variability of the sea bottom from one

area to another makes it impossible to express the scattering stv'ength adequately

in any one mathematical formula. Two differen assumptions are widely used re-

garding the angular dependence of the scattered intensity: (1) that each element

of the bottom acts as an omnidirectional 3curce of scattered sound, and (2) that

the intensity of the sound scattered by each element of the bottom is proportional

to the sine of the argle the scattered wave makes with the plane of the bcttom

(Lambert's law). In this discussion we shall restrict our attention to the

*R. P. Chapman and J. H. Harris, Jour. Acoust. 3oc. Am., Vol. 34, pp. 1592-
1597, Oct. 1962.
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reverberation'which is returned in the direc.ion of the source, although there

are applicati6ns in which other scatt~ring panles are. of inteiest. If theihci-

dent wave has-an intensity I and strikes.t bottom at a grazing angle 0, the

acoustic power falling on a small area 4A is IAsinE. According to the first

assumption the index intensity of the scattered wave is

. I A i AA sin 0
II '  .. 27rrl 2

where -i s a constant. The corresponding scattering strength, from (1004) and
(10;59), ,is

Sb = k1 + 10 log sin 0 (1064)

where 1
k = 0 log 2r 1

2

According to the second assumption, the intensity of the scattered wave is pro-

portional to sin2 e and the scattering strength is

Sb = k2 + 20 log sin 9 (1065)

Some of the experimental data appear to favor (1064), and some to favor

(1065). Representative values of k2 are in the vicinity of

k2  -28 db

Recent measurements by Urick (NOL) and Saling (Daystrom)* and by

Burstein and Keane (NADC)**, using explosive sound sources, show fair agreement

with the sine-squared law at grazing angles less than about 60 degrees, but in-

dicate a much higher scattering strength at angles nearer the vertical. These

results suggest that a large part of the incident energy is scattered at angles

in-the vicinity of the direction of specular reflection. The data are more
nearly represented by an empirical equation of the form**

Sb = k3 + k4 log tan e (1066)

Unfortunately, the values obtained for k3 and k4 in three different ocean areas

vary widely.

*R. J. Urick and D. S. Saling, Jour. Acoust Soc. Am., Vol. 34, pp. 1721-

1724, Nov. 1962.

**A. W. Burstein and J. J. Keane, Jour. Acoust. Soc. Am., Vol. 36, pp. 1596-

1597, Aug. 1964.
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3. Recognition Differential.

The aural recognition differential agaihst reverberation, which

we shall call MR, depends upon both the ping duration V and the Doppler shift Af.

The following information is, based on World War II data taken from Vol. 7, Div. 6

of the NDRC Reports, "Principles of Underwater Sound." In the absence of Doppler,

the recognition differential decreases with increasing ping length. For pings

longer than about 40 uilliseconds the experimental curve may be fit reasonably

well with the formula

where Vis in milliseconds. The slope of the experimental curve tends to flatten j
off at shorter pi.rg lengths. 

e

The presence of a Doppler shift of about 20 cps or more, either up

or down, causes a sharp decrease in the recognition differential, illustrating the

ability of the ear t- distinguish the difference in tone. Dr. H. 0. Benecke,

when at the Naval Air 2Lvelopment Center, fit the experimental data with the

following equation:

I MR = 3- 0 log 0.39 "if%2 1

which may be transformed 
as follows

MR  = 26 - 10 logt - .0 log (1 + 0.375tj0-4tf 2vT2 ) (1067)

where T' = ping duration, milliseconds

- Af = Doppler shift, cps

. f = sonar frequency, kc

vT = target Doppler speed, knots

4-. Reverberation-Limited Ranges.

The sonar equa'tion for reveroeration-limited ranges is basically

the same as for noise-limited ranges. In lieu of (1032) we have the following

so +T-2N w = LR+MR+AS (1068)

There are two differences between the noise-limited and reverberation-limited

equations.

(1) The probability distribution of the echo excess ALE is not
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the same, due to the fact that reverberation tends. to be. more variable h n

noise. Thexstandard deviation of the reverberation level for a single-freqdency

,pulse appears to be about 5 db. If this is added to all the other factors, the

resultant standard deviation is about I db higher than the value for the hoise

case. However, considering the uncertainties involved, this differencea: x'be

ignored and the same value of 12 db may be used.

which complicates s6mewhat the solution of (1068). Probably the most straight-

forvard method of solving for the range is to compute each side of the equation

separately, plotting the ti. curves as functions of the range r. The limiting "

ra-ge is then the point at which the curves cross. The effect of noise (right-

hand side of (1032)) may also be plotted as a horizontal line on the same graph.

It will be noted that in the ideal case of inverse square spread-

ing the echo, reverberation, and noise levels have the following range dependence:

Echo level: varies as -40 log r

9Surface reverberation level: varies as -30 log r

Volume reverberation level: varies as -20 log r

Ambient noise level: constant

When the echo level and the reverberation and noise levels (including the re-

spective recognition differentials) are plotted as functions of log r, two pos-

sible conditions may occur, as indicated schematically in the following sketches:

lE01.0 ECHtOq

RE" R S EA- Z

NOISE~ Bu

LOcq r LO

NOISE-LIMITED REVERBERATION-LIMITED
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In the first situation the 3cho drops below the noise at a shorter range than it

drcps below the reverberation; the sonar is noise-limited. In the second situa-

tion thp echo drops below the reverberation level first, and the sonar is r.everb-

eration-limited.

E. Special Types of Pulses; Some Si al Processing Considerations.

The subject of signal processing was introduced in a somewnat indirect

way in the discussion of signal detection. The principal purpose of the signal

processing in that context was to enhance the detectability of signals relative

tc backgrord noise. Signal processing is useful for other purposes as well. It

can be applied to discriminate against reverberation. It can also improve the

resolution of the sonar in the measurement of both range and Doppler speed. The

degree of signal processing gain which can be achieved is dependent also upon the

characteristics of the sonar pulse which is transmitted. In this section we shall

examine a few of the types of pulses which are being used in modern sonars and

shall discuss briefly some of their advantages. It must be recognized, of course,

that the field of signal processirg is tremendously ccmplex and diversified; both

the scope and the depth -of the present discussion are extremely limited.

1. CW Pulse.

This term refers to the conventional single-frequency pulse. Con-

sider first the procesing gain against noise. We shall define the gain as the

ratio of the output signal-to-noise ratio to the input signal-tc-noise ratio.

Let
S = average signal power,

NO  = noise power per unit bandwidth,

Win input bandwidth, that is, the bandwidth to which the incoming

wave is filtered before being processed,

Wout = output bandwidth,

T = duration of the pulse.

A necessary requirement for good processing is that the bandwidths of all com-

ponents in the system be at least as wide as the bandwidth of the signal passing

through them, so that no appreciable part of the signal is lost. We shall make

the assumption that this is true. We shall also assume that the spectrum of the

noise is sufficiently flat that the noise power N in any band W may be expressed

as
N =N W (1101)
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The input noise power is NoWin. Hence the input signal-to-noise ratio is

,. (no12)
in NoWin

If no signal power is lost, the output signal-to-noise ratio is

M S S@ouut
Th-inlpoc-ig ~ ~ u _NoWout .L')

The signal processing gain against the noise is the ratio of (1103) to (1102)

S/N)out Win (14

~ (1104)(S/N)in -Wout

As an example, consider the aural detection of a 10 kc pulse. If

the sonar is designed to operate in a stationary position against targets with a

maximum Doppler speed of 30 knots, the input bandwidth, according to (1039a) and

(1040), is

Win = 2 x 0.7 x 10 x 30 = 420 cps

The output bandwidth is the critical bandwidth of the ear, about 50 cps. The

gain is therefore
' 420

50 = 8.4 or about 9 db.50

Suppose that instead of using the ear, we provide a bank of output

filters and detect the output of each of these filters. The minimum bandwidth

that can be used is the bandwidth of the signal. It is shown in standard books

on Fourier analysis that a "single-frequency" pulse of finite duration T has a

spectrum of finite width, the bulk of the energy falling within a band whose

width is approximately l/T and which is centered about the "single frequency".

Therefore the minimum bandwidth of each of the output filters is approximately

_1 (115)
Wout T

and the gain is
o(S/N)ut - WinT (1106)

It is interesting to compare this result with equation (927),

which was derived in the discussion of statistical detection theory for the case

where the signal is knomn exactly. In (927) SIN refers to the input signal-to-

noise ratio, W is the input bandwidth, and the parameter d may be considered to

404

0 _



be the output signal-to-noise ratio. The theoretical gain is therefore 2WinT,

which is twice the value obtained for the filtered CW pulse. The essential dif-

ference here is that the CW signal is not known "exactly". All that can be de-

tected at the output of the filter is the envelope of the pulse; all phase inform-

ation is lost.

Returning to (1106), we see that the theoretical gain can be in-

creased by increasing the length of the pulse. There are of course practical

limits, such as the complexity of a very large bank of extremely narrow-band

filters.
Consider now the problem of reverberation. We have seen that the

intensity of the reverberation is proportional to the pulse length. This, of

course, Idue to the fact that the extent of the insonified volume (or area) which

contributes to the reverberation is proportional to the pulse length. It will

be recalled, however, that the frequency content of the reverberation is limited

to the bandwidth of the transmitted pulse, plus a small amount of Doppler from

the scatterers. Therefore, if the target has sufficient Doppler to remove the

echo from the bandwidth of the reverberation, the two can be separated by means

of the bank of output filters. Consider, for example, a 100 ms pulse of frequency

10 kc. The minimum output bandwidth is about 10 cps. According to (1039a) the

minimum Doppler resolution is about

10 = 0.7 x 1O vT

or vT = 1.4knots

Although this figure may be somewhat optimistic, it gives an idea of the dis-

crimination available.

Finally, let us consider the resolution capability in range and

Doppler. The importance of good range resolution is obvious when one considers

the need for accurate localization of targets. Doppler resolution is also im-

portant, in that it provides information concerning one component of the target

velocity. (The other component can be estimated from the bearing rate.) To

simplify the discussion we shall express ranga in terms of zime and Doppler speed

in terms of the frequency shift, as expressed by (1041) and (1037) (neglecting

self-Doppler). Without going through a detailed analysis, it is intuitively

evident that the uncertainty in time is of the order of the pulse length T and

that the uncertainty in Doppler is of the order of the bandwidth l/T. A long
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pulse has good Doppler resolution but poor range resolution. Conversely, a short

pulse has good range resolution but poor Dopple: re.-olution. It is impossible to

achieve good performance in both dimensions with the same CW pulse. This limita-

tion is one of the reasons for going to more sophisticated types of pulses.

2. Linear FM Pulse.

A linear FM (frequency-modulated) pulse is a pulse whose frequency

increases or decreases linearly with time. In the following discussion we shall

assume that it increases. The equation for the frequency as a function of time

may be written in the form

f = fo + mt (1107)

where fo is the initial frequency an6 m is the frequency slope in cyc/sec2.

The phase angle 0 is the integral of the frequency. More specifically,

W I d
21r = 21r dt (1108)

Hence = 21r (fot + jmt 2 ) (l109)

There are s6veral ways in which.a linear FM signal processing

system may be implemented. We shall consider a system in which a replica of the

transmitted signal is retained and compared with the returning wave in the fol-

lowing manner. The frequency of this reference pulse is reduced by a suitable

amount. When the returning wave is received, it is beat with the reference, so

that the frequency of the resultant is the difference of the two. The output is

then passed through a bank of filters. For convenience of analysis, we shall

ignore the frequency shift applied to the reference, so that if at any instant

of time the frequency of the incoming wave exceeds that of the reference, the

difference frequency will be positive. If the reverse is true, the difference

frequency will be negative.

We shall divide the incomin6 wave into intervals T seconds long

and shall process each of these intervals, one at a time. Since we do not know

the range of the target, we must introduce a delay of r seconds into the analysis.

Although called a "delay", Vmay have any value between -T/2 and +T/2. The

effect of the target Doppler is to compress (up-Doppler) or expand (down-Doppler)

the time by a factor (l+a), where
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2vT
a V (1110)

C

If we assume an ideal point target, the phase angle of the returning echo is

= 2[(l+a)fo(t--) + +(l+a)2m(t-r)2] (ll11)

Note that the factor (l+a) enters as a sqvare in the second term because the time

is squared. The frequency of the echo is, from (1108),

fE = (i+a)fo + (l+a)2m(t-,) (1112)

Denoting the frequency of the reference (1107) by fR and performing the subtract-

ion, we obtain

fE - fR = ai + (2a+a2 )mt - (l+a)2mr (1113)

Since a is very small, a2 is thoroughly negligible. Also, for the purpose of

the present simplified discussion we shall neglect a itself in comparison with

unity, yielding the following approximation

fE- fR = afo- mv + 2amt (lll3a)

Consider now the case where there is no Doppler, i.e., a = 0.

Here there is a constant difference frequency having the value -mr. The situa-

tion is illustrated in the following sketch:

'f',

+ I

(4 I

Since the frequency is constant, we may pass the output through a bank of filters

whose minimum bandwidth is approximately l/T. Thus, if there is no Doppler, the

time (and hence range) resolution of the system is approximately

1

MT

Suppose next that the range is known exactly ('t = 0) but the echo has Doppler.

The term 2amt in (1113a) is fairly small and we shall temporarily neglect it.
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With this approximation we see that the difference frequency is again constant

Ad has the value afo (which is the Doppler shift Af of (1037)). The situation

is as shown below:

I -F I

hi I

ILI

tt

With the same filters as before, the Doppler resolution is

A (afo) 

Actually, neither the range nor the Doppler is known, but only the combination

af o - mT' If we ob3erve a given value of difference frequency fE - fR' then we

may say that we know the Value of this. combination to within approximately

A(afo-m) - 1i (1114)

With a linear FM pulse it is possible to determine the Doppler accurately if the

range is known, and vice versa. If we plot afo vs. V, there is a region of ambi-

guity around the line

afo - mr = constant

within which the coordintes of the target cannot be resolved. The extent of this

region is usually determined by computing the correlation function of the echo and

reference and drawing a contour for a constant value of this function. (Some use

a value of 0.5, others 0.707.) Tht. resulting plot is called an ambiguity diagram.

The following sketch illustrates a typical ambiguity diagram for a linear FM pulse.

The width of the diagram in the frequency dimension (constant 'r ) is of the order

of l/T, as indicated by (1114). The width of the diagram in the time dimension

(constant Doppler shift) is of the order of

11
mT W
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where W is the bandwidth of the signal

W mT (1115)

4 T

LINEAR FM PULSE

Ambiguity diagrams may also be drawn for CW pulses, as indicated belcw.

__J__

SHORT CW PULSE LONG CW PULSE

We must now consider the term 2amt which was ignored previously.
This term describes the change in sloDe of the frequency-time line due to the Dop-

pler, and its presence in (1113a) shows that the difference frequency fE - fR is

not really constant. If this term is sufficiently large, fE - fR will spread out

over more than one filter and will cause a degradation in the output. A reason-

able criterion for an upper limit on the tolerable error is that fE - fR should

not change more than lT during the pulse time T. This leads to the inequality

a < 1 (1116)2mT
2

or v < (n6a)

c 2WT
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If Doppler speeds in excess of the maximum' indicat-ed by (ill6a)' are to 'be -encounit-

ered, it is necessary to generate additional references which are artifiqhilly

Dopplerized.

Another problem occurs if the target is accelerating. If th tar-

get speed changes during the time T, the resulting change in afo will cause a

change in the output difference frequency fE - fR. Let v, be the speed at the be-

ginning of the echo and v2 at the end. Then the change in fE - fR is 2v2ile

Using the same criterion as before, namely., that this change should not exceed

l/T, we arrive at the inequality

v2 _Vl < C

2foT

or

< C (1117)S2foT2  (i7

where is the average target acceleration

S- 2 - Vl (1118)
T

The processing gain of the linear FM system against noise is sub-

stantially the same as that of a CW pulse of the same duration because of the same

output bandwidth. On the other hand, there is a large difference in the processing

gain against reverberation. If we assume that the scatterers are uniformly dis-

tributed in range, the reverberation returned at any given instant will be spread

out uniformly over the bandwidth W (1115), as indicated below:

I

-- J ". " TIME7

Since the oatput 'i.Ater has a bandwidth l/T, only a fraction l/WT = 1/mT2 of the

total reverberation appears in the outpu+. We saw earlier that the thickness of

the reverberating shell (for volume reverberation) and the width of the reverbera-

ting annulus (for surface reverberation) are equal Io i-cT. The linear FM system
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effectively cuts this distance into WT pieces and rejects all but one of them. As

regards reverbarationi, this is equivalent t, shortening the pulse from T to I/W

seconds. The FM pulse can be used in cooperation with the CW pulse, the CW-being

most useful against high-Doppler tArgets and the F1 against low-Doppler targets.

3. Doppler-Invariant Pulse.

We have seen that the presence of Doppler in the echo of a linear

FM pulse causes a change in the slope of the frequency-time curve and introduces

a residual "chirp" in the difference frequency when the echo is beat against the

reference. Because of this effect, it is necessary to generate a number of arti-

ficially Dopplerized references if the system is to operate effectively over a

wide range of Doppler speeds. This difficulty can be overcome by transmitting a

so-called Doppler-invariant pulse, in which the reciprocal of the frequency varies

linearly with time, or

fo (19
fR - 1 -kt ( 1 9

where k is a constant. The phase angle of the reference has the form

- fo loge (I - kt) (1120)

The phase angle of the echo, including Doppler shift and time delay, is

2irf0 loge [i-(I+a)k(t-r) (1121)

Taking the derivative of we obtain for the frequency of the echo

(1 + a) o (1121)

fE 1 - (I + a)k(t-) (1122)

If we neglect a in comparison with unity, as was done for the linear FM pulse

in (1113a), the difference frequency is

(a - krfo
fE - fR = (1 - kt)C 1 - k(t-r)] (1123)

Whenever the Doppler shift and time delay are related in such a way that

a = kt1 (1124)

the difference frequency is zero regardless of the actual value of the Doppler

shift. It is in this sense that the pulse is "Doppler-invariant". It is seen

that to take advantage of the invariant nature of the pulse it is necessary to
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search in time delay until (i124) is satisfied.

r The Doppler-invariant pulse is sometimes called a linear-period pulse,

since the period (11f) varies linearly with time. The similarity between the two

pulses is evident when (1119) is expanded in a series

fR = fo(I + kt + k2t2 + .. ) (1119a)

If we let

k m - (1125)

(Ili9a) becomes

fR= fo +mt+- + .(lll9b)

and above , which are relatively small (though not negligible).

4. Pseudo-Random Noise Pulse

The so-called pseudo-random noise pulse, when used in conjunction

with a correlator, is very attractive as a signal processing system and is now in

wide use in sonar systems. Let us temporarily ignore the "pseudo" and imagine

that a sample of white Gaussian noise of bandwidth W and duration T is transmitted

by a sonar projector. An exact replica of the transmitted pulse is stored in a

memory circuit and Ls-correlated with the returning wave received by the hydrophore

array. Let xR(t) represent the waveform of the stored reference and

xE[(l+a)(t-r). represent the waveform of the echo which involves a Doppler shift

a (=2vT/c) and a time delayq'. The output of an ideal correlator is
T

y(-e,a) = JxR(t) =E [(l+a)(t-r) dt (1126)

Assume for the moment that there is no Doppler shift (a = 0). The time delay

must be inserted into (1126) because the exact time of arrival of the echo is not

known. In order to obtain the maximum output corresponding to t = 0, a large

number of correlations must be performed on the incoming wave as it is received.

Since each correlation is a discrete process, It must be varied in discrete steps,

but if the interval A between successive correlations is sufficiently small, the

condition of exact time coincidence may be approximated to a sufficient degree.

When this has been accomplished, the correlation function (for zero Doppler) is

T

y(o) = xR(t) xE(t) dt (1127)
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Since the signal xR(t),is (almost) exactly known, this is the output required-by

(915) for~an optimum receiver, Case 1. The signal -- rating with this j
type of pulse is therefore, except for hardware limitations which preclude eaxt

implementati6n of (1127), an optimum receiver with a signal processing gain ofo.2WT.

It should be pointed out that the random noise pulse referred to

here applies to Case 1 (signal known exactly) rather than to Case 2 (white Gaussian

noise signal), because the noise in this case is no long3r a random process;. it is

known by ,virtue of the storage of an exact replica of it.

The resolution capability of a random noise pulse is. found by eval-

uation of the integral (1126) as-a function of the Doppler shift and time delay,

a task -which is beyond the scope of these notes. It is found that the region of

ambiguity, defined as for the linear FM pulse, is enclosed within approximately

the curve shown in the sketch below, in which the ordinate is the Doppler shift

afo where fo refers to the center frequency of the signal band W. It is seen here

I

that the noise pulse has a high resolution in both range and Doppler.*

As regards reverberation discrimination, it is seen that the ef-

fective pulse length is reduced from T to 1/W, representing a gain equivalent to

that predicted for the linear FM pulse.

There are a number of practical problems associated with the imple-

4mentation of the random noise pulse system, and these have led to a host of new

hardware developments--a process which is continuing at an accelerating pace.

Allen and Westerfield (NEL) have published a comprehensive summary of the field.**

One of the problems has to do with the difficulty of storing an

*Because of the high Doppler resolution it is necessary to generate a large

number of Dopplerized references.
**W. B. Allen and E. C. Westerfield, J.A.S.A., Vol.36, pp. 121-139, Jan. 1964.

413



undistorted replica of the, transaitted pulse. A current-solution tc this problem

is the generation of a pseudo-random noise pulse by means of a shift-register-en-

coder (SRE). This is a device consisting of a shift register with-a feedback.ar-

rangement. Th shift register has been mentioned previously incon.ectionwith

i transduCer systems (electrically steered arrays). In the SRE the output ,of the
or Wove

j last stage in the shift register isadded to the output of one of the earlier

stages, usingbinary arithmetic (0+= 0; 0+1 = 1; 1+0= 1; 1+1 =) and- the;_

resultant is-fed back into the first stage. The shift register has l's in- all

stages at :he start. Upon initiation of the pulse, the feedback process continues

V step-by step, And the digits (I or 0) are passed along from one stage tothe next

-down the shift register. The output from the last stage is fed through a band-

pass filter and then on into the transducer. The feedback 'process results in a

random-appearing code of l's and O's. The code is not really random, however,

but is & completely determined,. repe. ting sequence of finite length. When properly

designed, the maximum length of the code is 2n - 1 bits, where n is the number of

stages in the shift register.

The advantage of the pseudo-random code of the SRE is that it cir-

I cumvents the necessity of storing the pulse for long periods of time, which is a

difficult thing to do. After the pulse has been transmitted, the SRE is reset to

I its initial configuration. Then after any desired delay time, the idenitical pulse

can be re-generated merely by reactivating the shift register.

Although the bandpass filter introduces some smoothing, the pseudo-

random pulse is essentially digital and the correlation is usually done digitally.

Both the incoming wave and the reference are infinitely clipped and only the signs

are retained.

A second problem is that of the requirement for a very large number

of correlations. Each correlation involves a piece of data T seconds long. But

during this time enough correlations must be performed to provide the desired

resolution in It . If this resolution is &r, the required number of correlations

is T/Ar , a number which may run into the hundreds.

This problem has been solved by means of time compression. One of

the first devices developed for this purpose is the DELTIC (DElay-Line TIme Com-

pressor). A DELTIC is a device containing a delay line through which digits

(1 or O) are circulated. Two DELTICS are required for a correlation, one for the

reference and one for the incoming wave. The latter is called the signal DELTIC.
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The signal is sampled at a rate sufficiently high to retain a- high percentoge of

the informatiorn contained .n the wave. Let N denote the number of samples con-

tained in tue transmitted pulse. Then N-l samples are circulated in the signal

DELTIC, making one circuit during the interval of time between the arrival of suc-

cessive samples. Th.cause there is one too few samples in the train, one sample--

the oldest-.-is discarded on each circulation cycle, and this is replaced with the

next sample arriving from the hydrophone. The signal DELTIC is thus continuously

up-dated as the returning signal arrives from the water.

In the refererce DELTIC all N samples of the reference are cir-

culated continuously. During any one circulation cycle the outputs of both

DELTICS are cross-correlated. That is, during the interval of time between the

arrival of successive samples of the signal, the correlation of the entire train

T seconds long is performed. In this way it is possible to perform N correlations

of data T seconds long in a time of T seconds. The DELTIC correlator in effect

compresses time by a factor of N and provides a resolution in'r of

j (1128)
N

The output of the correlator is averaged by a bank of bandpass filters.

- The DELTIC, is actually only the begirning of a series of develop-

ments of signal prccessing devices in a field which is expanding rapidly.

II
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(3) Infrared. Can detect wakes by measuring temperature difference

between disturbed water and surrounding water. Has some capability against
submerged submarines.

b. Acoustic. Good propagation through water. Had capability against

submarines at all depths. Subject to limitations due to thermal conditiona

(which cause curving of sound rays).

c. Magnetic. Based an. disturbanca of earths magnetic field caused by

submariae. Good method for clasai~ -.ion (distinguish submarines from
[ extraneous objects). Limited to very short ranges.

d. Other methods. Other methods being investigated. None shows

great prordim.-.

While some non-acoustic methods are valuable as auxiliaries, primary

method for submarine detection is acoustic.

3. Sonar

a. Historically, the term sonar was appied only; to active systems which

measured the azimuth and range of a target. In these notes the word will be

used in its broadest sense, including not only both active and passive systems.

but also sonobuoys and explosive echo ranging.

b. Signal Detection. Detection depends upon the relation between a signal

and the interfering noise. A signal is defined as an item understood or recog-

=;.zed if we receive- ii. hrether any given set oi sounds is a signal or not

depends upon the circumstances. For example, the noise generated by a sub-

marine is a 3ignal if we are attemptin.to detect the submarine by pabsive

!istening; it i0 interfering noise if we are attempting to detect an echo roturned

by the submarine.

c. Passive Sonar. (Passive Listening). Signal depends upon the amount of

noise generated by the target and upon the propagation loss involved In trans-

mission of the round from target to listening device. One-way transmission.

interference consists of ambient noise of the sea and scif -noise of the listening

platform.


